open applae (x
gazette 2

Third Edition Volume I, Number 3 July /August 1982

You are looking at the "new" OPEN APPLE GAZETTE newsletter. This is the product of the
merger between the APPLE THREE newsletter and the OPEN APPLE GAZETTE. To those
subscribers of the APPLE THREE thanks very much for your patience. We believe that the
wait was well worth it. What you are reading is but one step in the right direction.

With each issue OPEN APPLE GAZETTE will improve, in our quest to continually bring you a
better publication. Our next issue will have a new look on the cover.

Due to the difficulty of merging two newsletters with different schedules it was decided
to withhold publishing the second issue of APPLE THREE. APPLE THREE subscribers will
receive the second issue of the OPEN APPLE GAZETTE instead. This is bound to create
some confusion so an explanation is included for those subscribers.

The reason for doing this was clear: by combining the two newsletters we could pool
resources and produce a better and more expanded product. An immediate benefit is that
the OPEN APPLE GAZETTE will be published on a more regular basis. The other obvious
improvements in quality and service are expected to benefit all OPEN APPLE GAZETTE
readers. Those few readers that are duplicated in our lists will receive a refund for
their APPLE THREE subscription. All APPLE THREE subscription requests that included
orders for back issues: the extra funds will be applied to your 1983 subscriptions.

All readers please note: with this issue we are dedicating the new "APPLE /// NETWORK",
This bulletin board is for use by Apple /// owners only. To access this board you have
to dial 415-928-0412 and follow the log-on procedures. The password for the following
months is TANGO. We will periodically change the password so that only ORIGINAL APPLE
///rs members will have access. Please note that the bulletin board only supports
communications at 300 baud.

We are looking for user contributed software to offer to users as public domain Apple
/]| software. Additionally if you have programs with commercial value let us know and

we will sell it to other members and pay you a royalty.

We thank you for your support and contributed articles. Keep them coming.

original apple #/ rs

Original Apple ///rxs
CLUB INFORMATION
MEETINGS

Meetings are held at 7:30 PM on the third
Wednesday of each month. The location is
the Board Room of the California Bar
Association offices at 555 Franklin St.
San Francisco.

MEMBERSHIP

Annual membership dues are $25 from the
date application received. Your check
payable to the Original Apple ///rs may
be mailed to the address below.

OPEN APPLE GAZETTE POLICY

All manuscripts, photographs, and other
materials are submitted free and released
for publication. They become the
property of the Original Apple ///rs and
the Open Apple Gazette. Authors should
clearly mark all material submitted for
publication so that credit may be given.
The publishers/editors do not necessarily
agree with, nor stand responsible for,
opinions expressed or implied by other
than themselves in this publication.

The Original Apple ///rs is a non-profit

organization comprised of, and supported
by, Apple /// owners and users. The
Original Apple ///rs is run by volunteer
officers and committees, and the club
endeavors to aid other Apple users
through this educational publication -
"OPEN APPLE GAZETTE". Address all
inquiries to: Original Apple ///rs, P. O.
Box 813, San Francisco, CA 94101.

REPRINT POLICY

All articles appearing in the Open Apple
Gazette not copywrited by the author may
be reprinted by another non-profit Apple
user group so long as proper credit is
given to both the Open Apple Gazette and
the author. Proper credit is defined as
article title, author, and the words
"Printed from VOL X, NO Y of the Open
Apple Gazette." Permission to reprint a
copywrited article may be obtained by
writing to the author c¢/o the Original
Apple ///rs.

OFFICERS

PRESIDENT Don Norris (415)
673-7635

VICE PRESIDENT Kent Hockabout (415)
521-1771

TREASURER Julia Amaral
SECRETARY Charles Coles (415)
386-8623
CONSULTANTS Randy Fields

Ken Silverman

- /1l -

ARTICLE SUBMISSION POLICY

The Open Apple Gazette welcomes any and
all articles dealing with the Apple ///
Computer and its associated hardware and
software. Articles may be submitted
doublespaced and typewritten, or on the
APPLE WRITER /// word processor.

We will send your disk back to you as
soon as we output the article on our
printer.

Public Domain Software for the ///

Public domain software for the Apple][
was undoubtedly one of the primary
reasons for its success. This software
enabled owners to learn more about their
machines and how to use them profitably.

Public domain software for the /// has
been slow in coming but here are some of
the first that are available. The
Applecon program from Apple Computer Inc.
will greatly add to the library of public
domain software for the ///. You can
help with this by sending us programs you
have converted to or written for the ///.

Applecon from Apple Computer Inc.

Applecon is a new utility for the Apple
/// which converts Applesoft BASIC
programs to Apple /// Business BASIC
programs to the extent that they can be
machine converted. This program will not
convert any copy protected programs or
diskettes. This wutility will take an
Applesoft (Apple 1II) program and move it
up to SOS and into Apple Business BASIC
and then will make the proper changes.

Those lines it cannot convert directly

into Business BASIC will be flagged into
a REM statement for you to correct. The
disk comes with several pages of
documentation on the disk in a text file.
The file can be read by Apple Writer ///,
or you can output it via the Pascal
System.

File Cabinet ///

This 1is a small general purpose data base
management system written in Business
BASIC. The use of File Cabinet /// is
simple and most of it is self
documenting. File Cabinet provides a
means of interactively defining data
files, entering data, sorting, retrieving
records containing specific data,
deleting records, and printing reports.
Because all of the data in File Cabinet
is memory resident the size of the data
base is limited to a relatively small
amount but the handling of this data is
very fast.

DOS to SOS text File converter.

This program enables you to move DOS 3.3
text files to SOS. It is wuseful in
moving VisiCalc Models from the][to the
11/ If you own Apple Writer the Apple
Writer Utility diskette already will do
this for you.

These diskettes are available to members
for $8.50 each. Non Members $10.00.
Canadian Residents add S 1.00 for
postage, add $2.00 for other foreign
postage. Make your checks payable to
the:

Original Apple ///rs
P. 0. Box 813

San Francisco, CA
94101

-1l -
CP/M On An Apple ///

By: William C. Jacobson

The CP/M Softcard marketed by Apple has
finally arrived, permitting owners of the
Apple /// access to the vast amount of
software available for this business
oriented operating system. As touted by

Apple, Owners of the /// now can use DOS,

SOS, and CP/M on their marvelous
machines.

| purchased one of the first copies of
the Apple Softcard System available in
the Washington, DC area, and would like
to relate some of my initial experiences
with it.

While it will be sometime before | can
classify myself as an expert in matters
CP/M, | have been able to wend my way
through its special command structure
with a minimum of problems.

One of the first questions | had about my
new Softcard was the existence of any
unique features that distinguish it from
its many relatives. As far as | can see,
there are no special CP/M related
functions of significance. It simply
allows me to access CP/M.

Having said this, however, | must qualify
my comment in two respects:

The SOSXFER function of the Softcard
does allow transfer of ASCII files
from SOS (the resident Apple ///
operating system) to CP/M; and

It is as yet unclear what
applications programs (off the shelf
CP/M software) will work on the
Apple ///.

The SOSXFER function continues the Apple
"tradition" with the /// of permitting
easy text file interchange between
operating systems. An important use of
this function involves the WordStar
program that | used to write this
article. | have been able to quickly
transfer Apple Writer /// files to CP/M
for reformatting and modification. This
compatibility also extends to the
SpellStar spelling check software for
WordStar. | am now able to prepare ASCII
files using whatever word processing
software seems appropriate for the file
being created, and then use the special
features of WordStar and SpellStar to
full advantage. This statement applies
both to Apple Writer and the powerful
Pascal text editor available for the ///.
| assume that it would also apply to
Apple Il files transferred with the Apple
Writer /// utility disk, but | have not
attempted it.

The significance of SOSXFER is easily
illustrated. My teenage son is a writer

and finds Apple Writer /// an excellent
program for composing articles. It is
very easy to use, so that he can
concentrate on what he is writing, and
not on the peculiarities of the software
he is using. However, he also likes the
formatting features of WordStar and the
spelling checks available with SpellStar.
With SOSXFER he can have all the
advantages of each.

There are still many questions about what
applications software will or will not

work on the Apple ///, without major
adaptation. This article is testimony to
the fact that the Apple Il version of
WordStar can be adapted, if you follow
the special instructions listed in the
Apple Technical Note on this subject
(Softcard /// dated August 16, 1982).

While | intend to make extensive use of
the M-BASIC software that comes with the
Softcard, my primary interest is off the
shelf programs. Of particular interest

is the dBASE |l data base management
system. | have sent a letter to
Ashton-Tate, the creators of dBASE, and
hope to receive a favorable response in
the very near future.

If some adaptation is required, the key

is instructions needed to make the
conversion. The Dynamic Debugging Tool
(DDT) feature of CP/M allows you to make
changes very easily, once it is clear

what you have to do. For WordStar, it
took me awhile to learn to use DDT, but
the actual changes only took a few
minutes. | hope that Apple will provide
Technical Notes for all popular CP/M
software, so that this may be a simple,
uncomplicated process.

111

A Funny Thing Happened On The Way To
The Perfect Program - Version 1.0

By: David D. Meisel

As a programmer with nearly 20 years of
experience (| started "hacking" as a
graduate student working toward a Ph.D in
astrophysics when IBM 650's and 1620's
were considered "state-of-the-art" and
have been a slave of mainframes ever

since !!) the advantages of the S.0.S.
that runs the APPLE /// were crystal

clear. No more worry about assembly
coding, no more worry about where to put
the data and program instructions and no
longer would figuring out the 1/0O seem

like working your way out of a bear pit.

At last, one could concentrate on
programming the problem that originally
forced you to buy the personal computer

in the first place. Although | had
programmed previously in ALGOL, FORTRAN,
and FOCAL (one of the original high level
interpreter competitors of BASIC

developed for DEC PDP-8 minicomputers), |
decided to be lazy and try BUSINESS BASIC
for starters. If the program worked then

it would be easy to put it into a

compiled version using APPLE /// Pascal.

Conventional wisdom says learn the
language through a tutorial style book
and then tackle the "official" manual,
but figuring | knew all the beginning
stuff | decided to get right down to the
reference manual. | went through the
manual and put index tabs at all the
appropriate spots so that | could find
the rules concerning each construct as |
need them. (All reference manuals that
are really useful should be constructed
this way but few if any are these
days...APPLE take note.) These tabs will
take a lot of beating under most
circumstances so use ones that are
durable. Now armed with a "quick draw"
version of the "bible" | was able to get
through most of the easier stuff in no
time at all.

Now, the APPLE /// manuals are orders of
magnitude better than their mainframe
counterparts in virtually every way so
both the Owner's manual and the device
driver manual looked straight forward and
with proper index tabs were found to make
things pretty easy for an old hacker like
me. While some of my friends (who after
months of ownership of other brands) have
still not been weaned from their owner's
manuals, | -- the APPLE /// guy--- was
whizzing right along in his programming.
So far so good.

Then | found my first snag. Breezing
right along | started to look for a way

to chain a whole series of programs
together. On p.28 of the manual |
discovered the EXEC command. This great
little feature lets you chain by setting

up a text file of commands and then EXEC
the text file in immediate mode. The
thing that you are not told (until p.31)

is that the programs so referenced cannot

contain any INPUT or GET statements that
need stuff from the keyboard. Both of
the appropriate remedies are given on
P.32 but it would have been helpful if
these caveates had at least been
flagged on p.28. For example, in the
introductory paragraph it would have been
nice to have seen something like "..... by
allowing applications that do not require
ANY direct keyboard entry to be run in
sequential order. If keyboard entry is
required then an override feature is
available,but must be programmed into

each program itself.(see notes on p.32)."
Score APPLE /// one; Meisel zero.

Snag number two came somewhat later. As
an old FOCAL programmer, | was really
used to cramming as much on a line as |
could. After all line numbers do cost
memory space; it says so right on p.243.
Under the description about STATEMENTS on
p.47 it says ".....that a list of
statements may share one line number,
adjacent statements must be separated by
a colon (:)." Fair enough, | thought, so
I went blindly on my merry way. At one
point in my program, | needed to be
able,on option, to switch out and do a
subroutine and then return to the middle
of the line. That seemed easy.

10 IF A$="right"THEN GOSUB 80:A=B+C:IF
BB$="wrong" THEN 70:B=C©2

The subroutine begins at line 80 and has
a RETURN in it. Straight forward
application of the statement in this case
will be wrong because in normal BASIC
without concatenation (i.e. statement
chaining on one line) the result of the
first |IF statement does the subroutine if
A$="right" and then goes to the next line
regardless of what comes next on the line
containing the IF statement. When it does
not work properly, you turn to p.107 and
in the first paragraph you find the
statement that indicates your problem - -
- - A false expression in the IF forces

not quite. Take a gander at the examples
on p.107. Opps !!!!

")IF S/4>=17*NOT 2 THEN GOSUB
3000: INVERSE:PRINT "HI" ,
etc."

Thus instead of the machine doing only
the subroutine 3000 when the |F clause is
true it goes on and does the remaining
statements in the list as well. This is
just the opposite to the logic | was

applying.

Well, now the question comes up of how to
do what | originally intended, namely how
does one get an optional switchout and
return to do the rest of the line when

the IF clause is false ? A partial

answer is given on the next page where
the ELSE construction is introduced and
on p. 185 where the syntax references are
given for IF... constructions. The
examples given in the manual are very
poor, because it is not clear from them
whether the FALSE condition in the IF
continues execution of the other
statements in the line or not.
Furthermore, the insistence that the
":ELSE" is optional (p.108 and p.186)
when in fact for proper operation of the
compound IF... THEN statements it is
ABSOLUTELY ESSENTIAL ----- just further
aggravates the situation.

In the hope that it will save time and

effort for others, | offer the following
example of proper use of the compound
IF... THEN..:ELSE statement.

5 INPUT A$

10 IF A$="TRUE" THEN A=B+C+D:
PRINT A:GOTO 20:ELSE A=B-C-D:
PRINT A:GOTO 30

20 PRINT B,C,D:GOTO 40

30 PRINT D,C,P

40 END

In this example when A$="true" then it
computes A, prints A,and then goes down
to print B,C, and D in that order. This
means that if the statement between the
IF and THEN is true everything between
the "THEN" and the ":ELSE" is done.
(Note that the GOTO 20 is not needed
because 20 is the next line number, but |
have included it anyway.) IF A$ is
anything else other than the word "true"
then the statements between the ":ELSE"

and the end of the line are performed
including the printing of B,C,and D in
reverse order.

The logic of the construction is
perfectly sound, it is the explanation of
its proper syntax that is poor. | think
part of the problem is the fact that if

it really were intended for the construct
to indicate the nature of the operation
to be that as indicated in my example, it
is not really logical that the colon

occur as the delimiter of choice in the
"else" part. To me the construct "<space>
ELSE" would have been a better choice,
but of course this would not allow the
ELSE to have functioned like a REM
statement when the colon is omitted. (see
p.108) and ELSE is used before or
independently of the IF...THEN.

It is, of course, unrealistic to expect
manual writers to catch everything that
can be misinterpreted in their text, but
it seems a pity that a little sloppy work
in a part of what otherwise would be an
excellent text cannot be corrected before
reaching the consumer. Certainly the

APPLE /// PASCAL manual has been properly

updated and revised, so why not the
Business Basic manual too!!!!! Until then
be especially careful with your
IF..THEN..ELSE uses and test each
carefully before assuming they work
properly.

-/ -

Apple //] COBOL

Apple announced that come this Fall you
will be able to buy COBOL for the Apple

///. According to Apple Computer, Apple

/// COBOL has been certified by the
General Services Administration's (GSA)
Federal Compiler Testing Center at
high-intermediate level, which is a
higher level than many of the COBOL
systems available today for
minicomputers.

One feature of Apple /// COBOL stands
out: Animator, a powerful
screen-oriented, source-level debugger.
Animator allows the programmer to run a
program one statement at a time or
continuously while watching its execution
which could give it applications in a
teaching system. Animator provides an
"animated" view of actual program

execution, and it can stop program
execution at any time to allow for
checking and changing of data items. A
truly useful method of program debugging.
The full use of the Animator requires
256K of memory.

Another feature is FORMS-2, a COBOL
source-code generator which lets the
programmer begin with a blank screen and
end with a fully operational program.
FORMS-2 interactively creates data entry
screens and generates COBOL source for

use in a program. Price will be under
$500.

Pascal File Access Program

Record Processing Services (RPS) is a
sophisticated, multi-keyed file access
program that saves Apple /// Pascal
software developers costly development
time. RPS provides file management
services for programs handling large
quantities of data. Programs built on
RPS can access each others' files for
data manipulation or interchange. Apple
is committed to RPS as its own Apple ///
access standard. RPS has the following
specifications:

--Maximum file size is 16 megabytes

--Has 6 access modes, 11 data types

--Permits up to 8 keys per file and
multi-field keys

--Supports variable and fixed length

--Utilizes B-Tree index structure

--Can scan multiple files
simultaneously

--Supports ProFile hard disk

RPS also provides 64 bit integer numerics
that are primarily designed for
accounting and business programs. This
data type allows users to work with
numbers as large as +/-
9,999,999,999,999,999,999 (9
quintillion?) a feature which prepares it
to handle future budget deficits. OEMs
must obtain a license --through Apple
Vendor Support--for resale or
distribution. Release date is expected
to be in early fall with a suggested
retail price of $150. The RPS
programming manual is available
separately for $30.

Printing Mailing Lists on One Line
by Don Norris

While Ken Silverman and I were returning
from the Minneapolis Computer Show and
Applefest, he asked me if it was possible
to use Apple Writer /// Word Processing
Language to print out Mail List Manager
lists with all of the data on one line.
Individual entries printed out from Mail
List Manager will look like this:

Mr. Ken Silverman

International Apple Core

910A George Street

Santa Clara, CA 95050

Using the Apple Writer /// Utilities
diskette and Apple Writer /// Word
Processing Language I knew it was
possible to do just what he wanted.

Thriving on a challenge such as this, I
told him HELL yes. So here it is.

First, in order to use your Mail List
Manager lists with Apple Writer /// you
have to convert Mail List Manager files,
which are stored as Pascal Data, to a
text file which Apple Writer /// will be
able to read. This is accomplished with
the Apple Writer /// Utilities diskette.
Boot the Apple Writer /// Utilities as
described on page 103 of the Apple Writer
/// manual. In response to the prompt,
enter 3. Leave the Apple Writer ///
Utilities diskette in Drive 1, press
RETURN. The light under Drive 1 will
come on for a few seconds, and then you
will be prompted as follows:

MAIL LIST MANAGER TRANSFER
Drive number of Mail List Manager
diskette:

Enter 2

The next prompt you have is:
Namq of Apple Writer /// Volume:
Enter .DI<RETURN>

Put the Mail List Manager data diskette
into Drive 2, and the diskette you want
the list transferred to into Drive 1.
Press RETURN and the transfer of your
Mail List Manager List will be made onto
the diskette in Drive 1.

Boot Apple Writer ///. Use [0] (CONTROL
0) to catalog the diskette you
transferred your Mail List Manager List
to and you will see that you now have a
file on the diskette labeled MLMDATA.

All Mail List Manager Lists that are
transferred to Apple Writer /// text file
format are labeled this way. So to avoid
confusion you should change the name of
the file using the [0] (CONTROL O) rename
file option. For example, you could
change MLMDATA to LISTIl.

Assuming you are using the Mail List
Manager Standard Format entries
transferred from Mail List Manager, when
loaded into Apple Writer ///, your Mail
List Manager Lists will appear in the
following format:

<1>

@1@Mr. Ken Silverman
@2@International Apple Core
@3@910A George Street
@4@Santa Clara,

~@s@ca

~@6@95050

[1]1<2>

In order to put this onto one line you
need to enter several automated text
search and replace commands using [F] or,
to do it even faster, you can write a WPL
(Apple Writer /// Word Processing
Language) program. [F] (Control F) is
explained on page 36 in the Apple Writer
/// manual.

Apple Writer /// Word Processing Language
allows you to create a program which you
store as a file, that will automatically
make all of the changes necessary to
printout your list on one line per entry.
That is, you do not have to enter each
command separately for each change, nor
do you have to make notes for future use
for changing other mailing lists to the
same one line format.

For lack of a better name we will call
this program Ken’s one liner. In keeping
with the SOS file name requirements it
will be saved as: KENS.ONE.LINER.

To explain exactly how this program
operates explanatory comments have been
inserted. This is done using P followed
by a space for inserting comments. Apple
Writer /// Word Processing Language

ignores this, as explained on page 92 of
the Apple Writer /// Manual.

In these explanatory comments the number
in parenthesis refers to the page number
in the Apple Writer /// manual which will
provide you with additional information
for your reference.

This program assumes that the list you
want to print on one line has been loaded
into memory.

P Every Mail List manager entry has the
number of the entry at the beginning and
ending of each entry. Since we do not
want to print these out, they must be
deleted.

BEGIN B

P This places the cursor at the
beginning of memory

Frd4d, #%A

P This line finds all of the first entry
numbers on your list, such as <1> and
deletes them as well as the RETURN, which
follows the >. (42)

P Our next project is to remove the
number at the end of each entry. This is
done with the following line.

F{[=]<<A

P Now you need to delete @1@ and print
the next lines of your mailing list on
the same line. You can easily delete the
@1@ with the following:

F<@1@<<A

P This will solve part of your problem.
You still need to have all of your
mailing list lines, 6 in this example,
print out on one line.

P In order to print each succeeding line
of your mailing list entry on the same
line as the first you need to change the
carriage return value on the print
program values to #. This is done by
embedding the following command into the
text, ".CR@".

P By changing CR1 to CRf, in the
Print/Program format values, your printer
will not advance the paper one line when
a carriage return is received. (58)

P Your margins for printer output will
also be set with the text embedded
command ".1m15" and ".rm95". Remember
each text embedded command MUST be
preceded and followed by a RETURN.

P Both of these changes can be
accomplished with a single [F] command.
Which will become the next line of
KENS.ONE.LINER.

F<@1@<.CR@>.LM15> . RM95><A

P This line says FIND @l1@ and replace it
with .CR§ and a RETURN everywhere it
exists in memory from the beginning to
the end. Remember the cursor is at the
beginning of memory. (40)

P Additionally, to have your list
printed in neatly formatted rows, you
have to move your left margin. In this
case I am moving the left margin over 25
spaces with the ".LM+25" text embedded
command.

P Using [F] again I replace @2@, with
.LM+25 and a RETURN character.

F<@2@<. LM+25><A

P Now the left margin must be moved over
30 more spaces to allow room for the
company name. Additionally the"@3@" must
be removed. The following line will
accomplish this.

F<@3@<.LM+30><A

P Next the margin must be moved for the
City name, as well as deleting the @4Q@.
Here again [F] in the WPL program does
this for us.

F<@4Q<.LM+16><A

P The next two lines will move the
margins and delete the unwanted
characters for the State and ZIP code.

F<h@5@<.LMH3><A

F<"@6@<.CRI>KA

P Notice that in this last line we have
reset the Carriage Return entry in the
Print/Program Command level to "1". This
is because we now want the printer to
execute a line feed with the carriage
return.

P If you do not change CR@ to CRI
every one of the mail list entries will
print out on top of the first one.

P Now that everything has been changed
to the appropriate format lets print it
out. This was the whole purpose of this
program anyway. We do just that with the
following line.

PNP

Continued on Page 22

LIE R =

Business Form Processor

F R

Fom
Applied Softuware Technology

a review by
Gene MWilson

Reprinted from the Cider Press

INTRODUCTION

This month we'll take a 'hard'
programs called "VersaForm". This 'program' is so
extensive that 1t resembles software found on
larger 'mini' computers, such as IBM's System
34 /CMAS package (but we won't get into that here).
VersaForm runs a hard disk version that takes
800+K. The review will be more like a two-pronged
probe. I'll spend most of my time looking at
what's available (in the form of a 'working' data
base example). Woody Iiswood has also provided

look at a series of

some commentary in the form of an independent
'written review'.

Next month I'll 1look into the ‘'hard-disk'
capabilities in more detail (assuming that my
Corvus controller has returned from the

'factory'—one of these months I'll have to say a
few words about 'controller' cards that have only
one chip on a 'socket' on the entire board--but
that will wait)!

CONFIGURATION

The most important part of 'getting' into
VersaForm is to read and thoroughly understand the
'System Configuration Program'. The true power of
VersalForm will not be seen unless things are done
correctly here. There are provisions for assign-

ing 'key-activated commands' while in data entry
mode, and terminal initialization sequences. The
user can even have a ‘'standard' printer

initialization sequence, but still have the option
of entering a 'different' sequence at print time.
This allows printing some reports in 'compressed'
mode, while others can be in any other 'font' or
'size/style' available on the printer (or inter-
face card). The Configuration 'File' is named
BJTERM. BJTERM must be on every disk which will
be used as a 'boot' disk (DESIGN, FILING, REPORT,
and CPRINT).

SYSTEM CONFIGURATION

*RBITERM
Frefix code for this terminal is: NONE
COMMAND CODE FREFIXED
Display the cmd menu =) No
Validate & No
Get a form 7 No
Save a form No
First form in file No
lLast form in file No
File space report 18 Mo
Frint current form 16 No
Calculator = No
Next form 9= No
Back to previous form 2 No
Clear to blank form 17 No
Erase unvalidated data 5 No
Fage forward &2 No
Fage backward &0 No
Remove the current form 15 No
Index list 9 No
Delete a line 4 No
Cursor to command line 27 No
(uit - exit the program 25 No
Video reverse type ! 0 (none)
Video reverse seq NONE
Normal video seq @ NONE
Terminal initialization seq: NONE
Frinter page width default I 132
Frinter page length default bb

As important as the 'Configuration' process is,
it's the IAST chapter in the User's Guide. (The
Guide 1is a document that you should read one time
then put it carefully away—far, far away.) There
is a very good Tutorial Disk, a 'Hands-On Exper-
ience' Manual, and a very detailed 'Reference
Summary!' . Don'% look for configuration
information in the Manual or the Summary—it just
isn't there!

PHITOSOPHY

This isn't a major problem. The whole series of
programs called VersaForm are ALL set up with the
'non-computer-type' in mind. The menus are clear
and usually concise. The decision process is
straightforward, and there is ample opportunity
(in most cases) to 'back out' of a bad decision.
There need be no fear of making a mistake that
can't be rectified without losing many hours of
work. This quick experimentation can be a boon to
the person who isn't entirely sure about the final
'look' or 'appearance' of a report.

File #11:TRUCK

File size: 1040 storage units.

Frinter does not have form feed
Frinter does take LLF after CR
Frinter initialization seq: 27 69
Operator will be asked for

printer control sequence.

Display dummy data character is "."

Frinter dummy data character is "-"

Frogram volume names :

Vol name for Design pgm is DESIGN
Vol name for Filing pgm is FILING
Vol name for Report pgm is REFORT .
Vol name for Copy/Frnt pgm is CFRINT
Vol name for Rptwrk disk is RFTWORE

Default vol name for files is #5

Diagnostic mode is not set.

There are many other Data Base Programs on the
market. VersaForm fills a particular function
that 1lies somewhere between the very rigidly
structured formats of DB Master, and the mind
bending task of learning another 'language' with
dBase II. The other programs are great, but only
VersaForm has allowed me the freedom to take a
'quick shot' at form design or entry screen
formats. If I don't like the end result, it only
takes a couple of minutes to 'make it better'.

Minimum form size: 110 characters, 1 storage units.

Column line size! O characters

Estimated file capacity: 936 forms with no column lines.

DESIGNING THE FORM

This 1is the easiest part of the whole system.
Simply decide what goes where, answer questions
regarding range checking, length, justification,
if item is mandatory, look-up table, calculations,
and automatic filling, etc. The program will ask
all the right questions, keep track of the
answers, and even give the user hard copy of the
whole session. Changes are easy to make, and the
input 'mask' can be made quickly (changed, modi-
fied, or drastically altered just as quickly!).

Truck Ticket Entry Form:

Job -—- Ticket # ——-——-—— Mo —— Day —-- Truck
Code -

Owner —————— e e Driver —-———————-—

Gross Amt —————————
Less Brok ————————-
Less PUC. ————————m

Net Due.$ —————————

10

-= Any letter of the alphabet is OK
-— Any digit (0-9) is OK

—-— Optional leading digit (0-9)
-—= Any character is 0Ok

RN 3

Any other characters mean that only
the particular character will be
accepted in that position.

Format &%-————---—m—m—

This item: Job—————————————————

Semi 10Whlr
—————— Hrgl ————-= Hrgd -—-——-—-—-
Rate Rate

————— Tr#l 49.80 Tr#2 46.30

Amtl —————— Amt2 —————-

CHECKE.ING AND AUTOMATIC FILLING

Minimum—-length 1- Maximum—length- 2-

Justify—-(L/R/#) Selfchecking (Y) -
Numeric ——— (Y) y Date —-—————- Y) -
Yes—or-no ——(Y) - Mandatory -—-— (Y) y
EXTENDED CHECES

Ranges (Y) vy List (Y) -
Format (Y) -

AUTOMATIC FILLING
Lookup (Y) - Todaysdate (Y) -
Calec — (Y) - Column Total (Y) -

This item: Mo———m———m—— e

RANGE CHECKING

On each line type the limits of one
range. Input will be O if it falls in
any one range. If you give only the
low (high) value, any input higher
(lower) will be accepted.

Low value High value
L# L. H.
01 1- 2

This item: Mo——————————————————

TABLE LOOEUF

The data for this item will be obtained
by looking it up in the table below.
The item to get the lookup value from
is: Item name Truck—#—————————————

Look up Result

L e
01 J-1——————= BIG-"J" -TRKG———
02 J-2-—————- RIG-"J" —~TRKG———
0% J-3——mm——— BIG-"J" ~TRKG———
04 J-4————m——= BIG-"J" -TRKG~——
05 KR-1-——-—— BISHOF--———————
06 B-21--——-— BLANCHARD——-———
07 AC-1--——-—— AL-CAIN-———————
08 H-B88-————— CIRCLE-"H" ————~
09 T-1-—m——m—— DAVID-ROGERS——~
10 DDL-1————— DDL-TREG——————~
11 DDL~&————— DDL-TREG——————=—
12 DDL-7————— DDL-TREG——————~
T H-10-————— HIGDON-—~——————
14 H-11-————— HOSE INS——~———m—=
15 K-99-———w—— PUE-TREG~——————
16 E-111-——m—— F&k-TREG———————
17 R-15---~-— ROGERS——=——=—==———
18 R-18-————~ ROGERS—————————
19 R-B3————m—— ROGERS = —smeeemmmon—
20 0-1——————— ROGERS~————————
21 R-97—————— ROGERS~———————~
22 505——r———m— TEDS-TREG——————
23 T=lw=m——r— THOMAS—————————
284 Gl GORDON-————————
28 B2 GORDON—————————
This item: Owner--————-—————————-

11

We see that the item MOnth has a minimum length of

one numeric character,

a max. limit of two, the

number is right justified and it is mandatory (you

can't leave the
record) .

is

item blank and then save the
Low acceptable value is 1 and high value
12. Any number (or character entry) out of

this range will not be accepted.

Table lookup shows that automatic filling of Owner
and Driver are both tied to the truck number. In

this data base,

every truck number is unique.

This saves a great deal of time if much of the

data can be keyed to some common
item.

(but unique)

If there are over 99 items, the lookup

table is not going to provide you with a valuable

service (a limitation!).

The operator can enter a

value different than the one provided by the
lookup table.

The Net-Due
less the Less-Brok item,
Round off can be accomplished here as well.
(intermediate)

item is calculated by the Gross-Amt
less the Iess-Puc 1item.

Dummy

items can be set up to accomplish

further manipulation of the data.

CALCULATION
The calculation may be made by adding,
subtracting, multiplying, or dividing
two items, or one item and a number.
Operations are +,—,%,/,Low(lL),High(H)

Operations Items/numbers

I1: GROSS-AMT———————

OF1: - I2: LESS-BROK-——————————

oF2: - A LESS-FUC. ———————————

OFZ: - 14 ———rm— e e e

OF4: — I8 == e e

OF3: -~ I6f ~—————r e e

This item: Net-Due.$-——————————

l.ook up Result
L# ooalbenens veeneaRuvuaunns
01 J-1-—————- BELL-—————————
02 J-2———mm—— CAMPERELL —————~—
03 J-J-mm BRREAD————————=—
04 J-4—————=— |UCAS—————m—mm—m
0% KER—1--——-—— KARL-BISHOF-—-—-—
06 B-21—————— L.—~-ANDERSON~—~-
Q07 AC—-1—————m— AL-CAIN-——————
08 H-88-————— J.-CHRIS——————
0F T—1——m———— D.-ROGERS~————
10 DDL-1=-—=—~ BULLOCK-—~—————
11 DDL—-b6-—-—— W.-SMITH-————~
12 DDL-7————- BULLOCK-——————
3 H-10-———— J.~HIGDON———-—-—
14 H-11-————~ BEN-HOSE INS~——
15 K-99-—=-=~ K.,.E.-JOHNSON--
16 E~-111————- EINNARD———————
17 R-15——=——— R.T.~EDWARDS—~
18 R-18~—~——~~ B.~-WELSCH————~—
19 R-B83—————— SHEL TON——————~—
20 0-1-————-— 0. -WEBB~————=—=—
21 R-97——=—m—— AFARICIO-—————
22 505——————m— T.-FORD——————~—
23 T-1l-—m—m—m ROGER-THOMAS——
24 G-1-—————— D.-MARSHALL ———
28 G-2—-—————— V.R.-GORDON-——

This item:

Driver ———=————— e e

FILING

No secrets here. Hard work is the only answer.
Just keep dumping data into the machine. The
program will make things as tolerable as possible,
and a lot of checking can be done to see that the
data entry is done properly. Hard copy of the
day's activity can be obtained as well. There is
no reason to have faulty data if a reasonable
system of checks is maintained. The data entry
does not have to wait long periods while the
screen reformats between records. The program is
fast in this area and won't slow you down.

Truck Ticket Entry Form:

Semi

Job 8A Ticket # 1359-- Mo -5 Day 16 Truck # 505——— Hrsl
Code E Rate
Owner TEDS-TREG—————=— Driver T.-FORD—--——=——— Tr#1

Gross Amt -—-—408.738

Less Brok -——---20.42

Less FUC. :

Net Due.% —-——387.04

1241 OWNER: CIRCLE °H? SEMI:
JOB:SA DRIVER: J. CHRIS 10WL :
5710/ TRUCK#: H-88

CODE:C

1359 OWNER: TEDS TRKG SEMI:
JOB:SA DRIVER: T. FORD 10WL:
S/716/ TRUCK#: 505

CODE:B

1361 OWNER: TEDS TRKG SEMI:
JOB:SA DRIVER: T. FORD 10WL:
S5/17/7 TRUCK#: 305

CODE:B

1945 OWNER: HIGDON SEMI:
JOB: SA DRIVER: J. HIGDON 10WL:
5730/ TRUCK#: H-10

CODE:C

2173 OWNER: ROGERS SEMI:
JOB: SA DRIVER: SHELTON 10WL:
S/11/7 TRUCK#: R-83

CODE:B

2187 OWNER: GORDON SEMI:
JOB: SA DRIVER: D. MARSHALL 10WL:
5715/ TRUCK#: G-1

CODE:B

2188 OWNER: GORDON SEMI:
JOB: SA DRIVER: V.R. GORDON 10WL:
5/30/ TRUCK#: G-2

CODE:B

12

6.00

m@

49.50
49.50

49.50
49.50

49.50
49.350

49.50
49.50

49.50
49.350

49.50
49.50

49.50
49.50

-—8.

49.50
Amt1 408.38

1]

o

10Whlr

Hrs2
Rate
Tr#2
Amt 2

297.00

408.38
0.00

148.50
0.00

383.63
0.00

222.75
0.00

383.63
0.00

358.88
0.00

46. 730
—=0. 00

GROSS AMT: 297.00
LESS BROK: 14.85
LESS PUC: 0.67
NET DUE: $ 281.48
GROSS AMT: 408.38
LESS BROK: 20.42
LESS PUC: 0.92
NET DUE: ¢ 387.04
GROSS AMT: 148.50
LESS BROK: 7.43
LESS PUC: 0.33
NET DUE: $ 140.74
GROSS AMT: 383.63
LESS BROK: 19.18
LESS PUC: 0.86
NET DUE: $ 363.59
GROSS AMT: 222.75
LESS BROK: 11.14
LESS PUC: 0.50
NET DUE: $ 211.11
GROSS AMT: 383.63
LESS BROK: 19.18
LESS PUC: 0.86
NET DUE: ¢ 363.59
GROSS AMT: 358.88
LESS BROK: 17.94
LESS PUC: 0.81
NET DUE: $ 340.13

8/15/82 TRUCKING SUMMARY-BY OWNER Page 3
Da Owner Truck Driver Ticket Hrsi Hrs2 bross Aat Less Brok Less PUC. Net Due.$
ROBERS 61.25 0 3031.90 151,60 5.82 2873.47
2 TEDS TRK6 505 1. FORD 2407 5.00 247.50 12,38 0.56 234.57
10 TEDS TRKG 505 T. FORD 2406 8.00 396.00 19.80 0.89 375.31
11 TEDS TRKG 505 T. FORD 2405 5.00 247.50 12.38 0.56 234,57
15 TEDS TRKE 505 T. FORD 2403 8.00 396.00 19.80 0.89 375.31
16 TEDS TRKG 505 T. FORD 1359 8.25 408.38 20,42 0.92 387.04
17 TEDS TRKS 505 1. FORD 1361 3.00 148.50 7.43 0.33 140.74
TEDS TRKG 31.25 0 1843.88 92.21 4,15 1747.54
11 THOMAS TRKG 1-01 ROGER THOMAS 2559 4.75 219.93 11,00 0.49 208.44
THONAS TRKG 0 4.75 219.93 11.00 0.49 208. 44
REPORT CONTROL INSTRUCTIONS 3/1.25 10.25 17861.56 893.08 80.20 16928.28
FILE #11:TRUCK, REPORT TEMPT1
Page width 132
Page length 66
Title:
Print:
Day
Ticket # g 5/p
Owner
Driver Da Ticket Owner Driver Truck Hrst Hrs2 6ross Aat
Truck # .
Hrsi
Hrs2
Gross Amt
Sort:
Day (ascending) K.E. JOHNSON k-99 6.25 309.38
Owner (ascending)
Truck # (ascending) 5.25 0 309.38
Subtotal control:
Day
Total:
Hrsi 10 2554 BI6 ’J’ TRKE CAMPBELL -2 7.50 .25
Hrs2 10 2557 BLANCHARD L. ANDERSON B-21 1,00 49.50
Gross Amt |, 1241 CIRCLE "W’ J. CHRIS H-88 6.00 297.00
10 3493 DDL TRKG . SNITH DDL-& 1.75 383.63
10 2555 BORDON V.R. GORDON 6-2 7.50 31,25
10 12174 ROBERS SHELTON R-83 8.25 408.38
10 2406 TEDS TRKG T. FORD 505 8.00 396.00
10 46,00 0 2277.01
11 2504 AL CAIN AL CAIN AC-1 2,00 99.00
1 2558 BIG ’J’ TRKE CANPBELL -2 475 235.13
1 2422 GORDON D. MARSHALL B-1 2.00 99.00
1 2175 ROGERS SHELTON R-83 4.50 222.75
11 2405 TEDS TRKG 1. FORD 505 5.00 247.50
1 2559 THOMAS TRKE ROGER THOMAS 1-01 475 219.93
1 18.25 475 1123.31

13

01 1 2 3 4 S & 7 8 9

02 4567890123456789012345678901234567870123456789012345678901234567870123456789012345678701
03

04 1 2 3 4 S 6 7 8 9

035 45678901234567890123456789012345678901234567890123456789012345678901234546789012345678901
06

33636 36 9 % OWNER: %% %% %% ¥ %%%%% SEMIT %%%%%% @ 49.50 = H#H¥%H* GROSS AMT 2 33333 % 3% 3¢
JOB: #% DRIVER: 6363696 3 9 36336 3% % %96 1 OWL © HRAUEE @ 49,50 = HHEHRE LESS BROK 2 %% %% %% %% #
*/en/ TRUCK#: %3%3% %% LESS PUC: #3333 %% %
CODE: *

REPORTS

The standard reports are handled well. Simply
move the cursor around the entry screen and indi-
cate which items will be printed (and the order of
printing). Subtotals, item totals, and sorting
criteria are all established in a fast, straight-
forward manner. Changes are easily made.

The real challenge is to design a 'pre-printed’
form, one which has very critical locations for
data. The tools provided include a numeric scale
and a 'dummy' record can be printed to the new
form with data represented as '*'s. Maximum
fields are laid out so no doubt exists as to what
will appear. Text can be added to every printed
form to further clarify the data that is output.

Reprinted from the Cider Press

Versa Form
Business Forms Processor
Review (c) copyright by Woody Liswood 1982

Published by:

Applied Software Technology
15985 Greenwood Road
Monte Sereno, Ca. 95030

Systems:
Apple IT and ///
Also Hard-Disk versions

VersaForm does just that. It creates, and
lets you use almost any type of form that
you might need. Invoices, packing slips,
point-of-sale receipts, personnel records
are all easy to create and use. The
flexibility shown by the program also
allows you to create "mini data management
systems" (my quotes). However, before you
jump into the data management area you
should create and use a few form applica-
tions so that you are familiar with the
way the program thinks.

14

NET DUE: $##%#%%%%%

The whole idea of having a data base is to be able
to store and manipulate the data. The report
module allows the data to be displayed in almost
any imaginable format, on pre-printed forms, in
many different sorting orders, and different com-
binations of data can be readily compared.

SUMMARY

VersaForm is a valuable tool. While not capable
of handling the 'huge' data base applications
occasionally required, it DOES handle the bulk of
jobs that exist. The program is fast, efficient,
well written, and well executed. The User's Guide
randomly seeks to provide information, and should
only be used if all other means fail. The program
will prove to be a real joy from the standpoint of
just 'powering-up' and 'creating'. This is one of
the few programs that deserves to be on every
business user's shelf.

VersaForm comes packaged in a box with a
somewhat easy-to-read and wuse manual,
very useful reference summary, a hands on
experience book (which you should
definitely do first) and six disks. Yep,
6 separate disks.

FEATURES

VersaForm is a PASCAL based system. It
stores it's data as "forms" rather than
what a data management system would call a
record. These forms can have single
items, such as name, date, address, etc.
They also can have column data such as
part number, description, etc. There is
also the capability to have a data entry
mask to check data as it is entered. You
can require fields that must be filed in,
have only numbers, dates, special formats
such as phone numbers, specifically for-
matted numbers, social security numbers or
special types of part numbers. You can
also have a list of separate entries which
can be allowed or you can specify a range
for the entry value.

There is automatic calculation during data
entry and printing. You can, for example,
enter 1in a part number, VersaForm will
then look up and enter in the description
and the price, then multiply the price by
the number purchased and put that in the
cost column. Then, when that invoice is
completed, it will automatically compute
the tax and total the entire purchase and
print the invoice for your customer.

Since this is PASCAL, VersaForm also works
with your 80 column boards so that you can
have what you see is what you get type of
form to use.

According to the documentation (I did not
test) it creates standard Apple Pascal
files so that you can use your data in
other programs.

EASE OF USE

I found the program rather easy to use.
It, however, has so many features that you
should spend a session or two with the
manual, the hands-on-experience disk and
try a thing or two, before you jump in and
start a important application.

The only part of the program, in my
opinion, which will cause some head-
shaking is the report generator. That is
not because it doesn't work, but because
it gives you many, many options. And the
Documentation does not always seem to be
clear.

CRITICISMS

I could not find any problems with the
program. No bombs, crashes or any of those
things. When you use it to do forms, you
will be very happy. When you use it as a
data management system, you will need to
be careful in your conceptualization
otherwise you will find that it 1is not
doing things just quite the way you
expected.

My only criticism is that it does not do
sub-total page breaks in the report
writer. This made the program less that
useful for «creating reports when I was
trying to use this as a data management
system rather than a form generator.
Otherwise, like I said, no problems.

DOCUMENTATION

The documentation is well written. It is,
however, rather hard to find things in.
Many important points are just kind of

mentioned here and there. Things 1like
maximum number of records, can the files
span multiple disks, - and other important
goodies are not all in one place. The
best way to approach this manual, is to
read it once. Then sit down and go the
examples in the manual while you are
sitting at your computer. Make certain

that you have a yellow high-liter and a
pencil. You will need to make notes as to
the features. And, since the instructions
are scattered all over the place, you
should hi-lite the commands with the
yellow pen. Then, when you need to refer
back to the manual you can find what you
need. I didn't the first couple of times
I used the program. And I wasted much
time trying to find things. The problem
is that this program has so many features,
you will need to spend lots of time with
it before you have memorized all of the
commands.

HOW-IT-WORKS

The six disks which come with the system
are:

1. Design program disk.
2. Filing program disk.
3. Report program disk.
4. Copy/Print program disk.
5. Tutorial disk.
6. Report work disk.
CREATING A FORM
The forms generator is a pleasure to use.
You put the Forms design disk into the
drive and a Pascal initialized disk into
drive two and away you go. Only now you

are using drives #4 and #5 because Pascal
uses those external device names for the

first two disk drives. If you need to,
you will have to initialize some disks for
use. There are specific instructions

about how to do that so don't worry.

In fact, when you boot the forms design
disk, you will be given a 4 item menu.
Forms design, System configuration, Ini-
tialize diskettes or name diskette.

When you chose Forms Design, you go to
another four item menu for copying an
existing design, changing a existing form,
designing a new form, or printing a form
definition.

VersaForm will let you place Text or what

‘they call Items anywhere you want on the

screen. Text is the labels you have for
your data fields. Items is the actual
data field. You do your forms design by
moving the cursor around the screen and
typing letters and dots. The dots
indicate a data field. Here's an example.

If you wanted a heading at the top of your
page, you would cursor over and type in
the heading. It could be your letter-
head, or whatever.

Then, you might say:

15

Bug Report

There is a bug which occurs in Mail List
Manager when one tries to filter a mail
list. Should you--for example--want to
filter those names from a list of 300 of
computer owners that own an Apple ///,
Mail List Manager will for some
unexplained reason will truncate the
output so that you end up with an
incomplete list (typically the last few
names are deleted).

As soon as Apple finds the cure for this
bug, it will notify all Mail List Manager
owners.

One reader, Craig Stauffer from
Sunnyvale, contributed this error in the
Universal Parallel Interface Card manual:
on page 9 in the third paragraph from the
bottom the sentence reads....and the Add
a Driver function.... This should read
"Read a Driver". Add a Driver is old SOS
terminology used in early versions. The
Silentype /// manual--which is the oldest
manual in the Apple /// system--for
example refers to "Add a Driver"
countless times.

VisiSchedule

If you use a period in a volume
(diskette) name, VisiSchedule will not be
able to load any files you have saved on
the diskette. This means you have to
boot the Utilities diskette and rename
the volume in order to use the files you
have saved.

SOS Pathname conventions allow the use of
a period in volume names. The
VisiSchedule manual on page 2-16, has an
example of a volume name with a period in
it. Hopefully VisiCorp will correct this
and follow the SOS Pathname conventions,
rather than establishing their own
conventions. By following the SOS
pathname conventions it will help make

all Apple /// software more user

friendly.

16

Printer set up strings for setting the

left margin do not work. To set up the
left margin using a Qume Sprint 9, boot
VisiCalc. Then with the printer on,
enter the following: /PP"(then the number
of spaces you want for the left
margin)<RETURN>. The printer head will
now move over to your desired left
margin. As long as you leave the printer
ON and do not RESET it, the printer will
always use this new setting for a left
margin.

Quick File ///

This new file management program is said
to provide users with a filing system to
help in managing small or medium-sized
databases of less than 600 records on the
Apple ///. Aimed at users such as
doctors, owners of small businesses, or
scientists, the program allows simple
arrangement of records in alphabetic,
numeric, or chronological order. For
personal use Quick File can keep track of
investments, collections, personal
inventory and financial records. The
program is divided into three menus:
Main, File and Report. The user
interface has been improved by allowing
one to view ‘two records by simply
pressing two keys to switch between
displays. Furthermore the program makes
extensive use of the Open Apple key plus
a letter to execute functions (Open Apple
+ A arranges records in file). In
addition to the above Quick File has the
following features:

--simple form design

--users can add or delete categories
without having to re-input stored
data (15 cat. max)

--Quick File can search and display
records by chosen categories

--records can be displayed or
summarized simultaneously (one
derived column)

The cost of Quick File /// is $100.00

The Third Basic

By: Taylor Pohlman
Reprinted from Softalk Magazine

When last we left the Lone Ranger, huge
boulders were crashing down the slope
toward his tiny campfire....No, I'm sorry
to say that the September column wasn't
quite that breathtaking or cliff-hanging.
However, taking the Apple /// out for a
spin does excite a lot of people, and we
hope that includes you. If you haven't
read last month's column, we recommend
you get a copy. This series is
progressive in that each article builds

on the previous one. We're going to
assume that you have been following the
series, so that each month we can cover a
new topic in the least possible amount of
purple prose.

Another reminder before we start: we
welcome questions and comments on this
series or on Basic in general. Because of
deadlines, each article is being written
pbefore the previous month's is in print.
Thus, reaction to your timely comment will
be somewhat delayed. Let those cards and
letters roll in, and the responses will
show up just as soon as inhumanly
possible.

The SOS File System Revisited. After a
brief discussion of the Apple /// SOS file
system, last month's column concluded with
something of a challenge for you. We were
working with a program to dump the
contents of the screen to the Silentype

printer, and we mentioned that the program

could be generalized for any file,
including text files. The point was that
SOS takes care of all the details about
how each device works, so the user can
change things at will. For reference,
here's the program with which we were
working:

50 OPEN#1, ".silentype"

90 INVOKE"readcrt.inv"

150 FOR vp=1 TO 23

155 VPOS=vp

160 FOR hp=1 TO 80

165 HPOS=hp

170 PERFORM readc@value%)
180 PRINT#1;CHR$(value$);
190 NEXT hp

200 PRINT#1

210 NEXT vp
900 VPOS=23:HPOS=1
1000 END

Before we modify this program to
generalize it, did you try to simplify the

program by using VPOS and HPOS directly in

lines 150 and 160? By that we mean:
150 FOR VPOS=1 TO 23
160 FOR HPOS=1 TO 80
If you did, you know that Basic will
respond to this change with the
classically familiar syntax error, because
VPOS and HPOS are reserved words and
cannot be used as index variables.

To continue, the challenge was to
generalize the screen dumping program so

the output could go to any file. Here's
one solution to that problem:
50 VPOS=23:HPOS=1
60 INPUT"Name of file to dump
screen to:";filename$
100 OPEN#1, filename$
110 INVOKE"readcrt.inv"
120 FOR vertical=1 TO 23
130 VPOS=vertical
140 FOR horizontal=1 TO 80
150 HPOS=horizontal
160 PERFORM readc@value$)
170 PRINT#1;CHRS${value%);
180 NEXT horizontal
190 PRINT#1
200 NEXT vertical

210 CLOSE

300 VPOS=23:HPOS=1

310 END
Several differences are worthy of note.
First, the cursor has been repositioned in
line 50 to the bottom of the screen to
avoid overwriting any existing data. The
user is then prompted in iine 60 to type
in the name of the output file. Note that
this can be any filename legal on the
Apple /// that accepts output (printers,
the communications port, a disk text file,
even .CONSOLE itself).

Note also the addition of the close
statement at line 210, This ensures that
all files are properly written to and
dispensed with at the conclusion of the
program. Failure to close files properly
can leave some data still in memory (since
files aren't automatically closed at the

end of the program). This can have some
interesting consequences if the file in
question is a disk file and you switch to

17

another diskette that doesn't have the
file created on it. Now is the time to
form the habit of closing all files at the
end of a program.

Running this program can be instructive.
Obviously, if you reply ".SILENTYPE" to
the prompt, it will work like the first
example. Try replying ".CONSOLE" now.
After the usual initial whirring of the
disk to load the Invokable Module, the
program appears to go to sleep for forty
seconds or so. Wwhat's happening is that
the program is reading a character and
then copying it back on top of itself!
The Apple /// is working its little heart
out, and the result is as exciting as
watching bread mold.

Now try replying with a disk file name
(you can just make up a name, as long as
it follows the filename rules). The disk
will whir as before. This time Basic has

a number of jobs to do. First, it must
open the disk file using the name you gave
it (let's assume you typed MYFILE.SCREEN),
Basic tells SOS to create the file
(assuming it doesn't already exist), by
making an entry in the directory of the
current disk volume and finding initial
space for the file. Basic then sets up a
buffer area in memory for communication of
data to and from the file. Since Apple

/] divides the disk up into blocks of 512
characters, this internal buffer is 512
bytes. This buffer size is fixed no

matter what record size you specify.

Later on in this article, we'll look at
techniques that use that piece of
information to ensure maximum efficiency
and performance in disk-based application
programs.

Once the file is opened, Basic than
invokes the Keadcrt module, and execution
begins. Notice that, although the printer
in our precious example started almost
immediately, there is a noticeable pause
before the disk spins into action, and it
appears to spin only four times before the
program stops. what's happening is this:
line 170 prints one character at a time
into the butfer. After eighty characters,
line 190 prints a carriage return into the
buffer and then starts the next line,
Atter a little more than six lines of the
screen (480 bytes plus six returns plus 26
bytes of line 7 to be exact) the 512 byte
buffer is full and must be written to

disk. That's the first spin of the disk

18

that writes the first block of the file.

Next, the block number is incremented, and
more writing starts from line 7 of the
screen. 512 bytes later the same process

is repeated until all the screen is read

by the program and written into the last
puffer. Some arithmetic would convince
you that Basic is in the middle of its

fourth buffer when the program finishes
reading line 23 of the screen. That's

when the previous comment about being sure
to close files comes in handy. The Close
command in line 210 forces the current
buffer to be written to disk, even if it's
not full, and the directory entry is
updated to reflect the new file

information.

After running the program, the catalog
listing of the file should look something
like figure 1.

TYPE BLKS NAME MODIFIED TIME

TEXT 00005 MYFILE.SCREEN 00/00/00 00:00

CREATED TIME EOF
00/00/00 00:00 1863
Figure 1.

Notice that Basic identified the file as a
text file automatically, because the

Print# command was used to write to it.
Notice also that the Blks used column
shows five. That disagrees with what we
had predicted, since the screen data
should have been able to fit into four
blocks (2048 bytes). The reason for the
extra block is that SOS allocates an extra
block as an index block to store
information about where the rest of the
blocks in the file are physically located.
This ensures that a large file can be
created, even if the disk is fragmented
into small areas of unused space. If you
look closely at the directories of

various files, you will note that all of
them have one more block that the EOF
column would indicate, except for the
one-block files, which have no need of an
index block. In this case, the EOF (end
of file) is after 1863 bytes. That works
out to twenty-three lines of eighty
characters (1840 bytes) plus twenty-three
carriage returns for a total of 1863
bytes. "Close enough for folk music," as
they used to say in high school.

Une last subject before we move on to
further explore files. The Silentype gave
us a permanent record of what was on the
screen, but since we wrote the results to

a disk file this time, we need a way to
dump the contents of MYFILE.SCREEN to the
printer. The following program easily
accomplishes the task and serves as a
general file-to-file transfer program:

5 INPUT"Name of file to dump:
"inputfile$

10 OPEN#1,inputfile$

15 console=0

20 INPUT"File to dump to:
".outputfile$

25 OPEN#2,outputfile$

30 check$=MID$(outputfile$,1,3)

35 IF check$=".co"OR check$=".CO"
OR check$=".Co"Then console =1

40 IF console THEN HOME

45 ON EOF#1GOTO 65

50 INPUT#1; a%

55 PRINT#2;a$;

60 GOTO 50

65 IF console THEN HPOS=1:VP0OS=23

70 CLOSE

75 END

There. AS long as you don't try to read
from the printer and print to the
keyboard, it should work fine.

Note that we've checked in line 35 to see

if the device being written to is
.CONSOLE. If so, line 40 clears the
screen to reproduce exactly what was there
when the original program was run. Line
65 repositions the cursor to the bottom of
the screen so that the prompt will not
cause the top line to scroll out of view.

More on Files. The subtle and nefarious
purpose of this lesson, if you haven't
realized by now, is to provide more
insight into Business Basic disk files.
We've remained true to the promise of the
first article and assumed that you are
skilled in Basic, so hang on as things get
more interesting....

So far, we've considered only the type of
disk files referred to as text files.

These are files that contain ASCII
characters, which are representative of
what would be printed out if we wrote data
to the screen instead of disk. For now
we'll stick with this file type and later
touch on data files, a useful and

relatively unique file type on the Apple
1.

we've already learned that the disk is
organized into 512-byte blocks. In fact,
Basic text tile records can be of any
reasonable size. Instead of using the
Open statement, which assigns a default of
512 bytes, we could have used the Create
statement, which allows up to 32,767-byte
records to be used. Of course, the record
size of a particular file is of no
consequence if we are merely going to read
each string in order (as we did with the
contents of the screen).

The real power of creating files of
various record sizes is to be able to read
data on a particular item in the film
randomly without having to deal with the
other data in the file. For example, if
we had wanted to print the twenty-first
line of the screen in the previous
example, it would be necessary to input
the tirst twenty lines, discard the data,
and then finally read and print the line
we wanted. A much more efficient way
would be to create the file as a random
access file with record size of eighty-one
bytes. Since each record will correspond
with one line of the screen, we have an
easy way too address the data in question.
Compare the examples below with the
previous sequential access examples:

50 VPOS=23:HPOS=1

60 INPUT"Name of file to dump
screen to: ";filename$

70 CREATE filename$, TEXT, 81

100 OPEN#1, filename$

110 INVOKE"readcrt.inv"

115 cumsg=""

120 FOR vertical=1 TO 23

130 VPOS=vertical

140 FOR horizontal=1 TG 80

150 HPOS=horizontal

160 PERFOKM readcuvalue$)

170 cum$=cum$+CHRS$ (values)

180 NEXT norizontal

190 PRINT#1, vertical;cum$

195 cum$=""

200 NEXT vertical

210 CLOSE
300 VPOS=23:HPOS=1
310 END

Note that we have added line 70 to create
the filename with the proper record size.
The notation of Text is extra baggaqge,
since the Print statements in the program
will automatically define it as a text

file, but it is good practice to be
specific. | have also added a new wrinkle

19

in lines 115, 170, 190, and 195. Instead
of printing each character as it is read,
the variable "cum$" is used to accumulate
characters as they are read from the
screen. Line 190 prints the entire line
of the screen using the vertical position
as the record number. The result when
running this program seems the same as
when running the sequential version,
except for one thing. If you catalog the
resulting filename, it should look
something like figure 2 (assuming a name
of SCR.DUMPL.RND).

TYPE BLKS NAME

TEXT 00005 SCR.DUMP.RND 00/00/00/ 00:00

MODIFIED TIME

CREATED TIME EOF
00/00/00 00:00 1944
Figure 2.

Everything is the same except the length.
It turns out that, when a file is created,
the first record is record 0, not record
1. This is consistent with the first
element of an array being element 0.
Therefore Basic has reserved twenty-four
(not twenty-three) records of eighty-one
bytes each for a total of 1944 bytes.

Now that we have associated a record
number with every line on the original
screen, we can locate a given line by just
giving its number instead of having to
read through all the other lines to find
it. Witness the modified read program:

5 INPUT"Name of file to dump:
"sinputfile$

10 OPEN#1,inputfile$

15 console=0

20 INPUT"File to dump to: ";
outputfile$

25 OPEN#2,outputfile$

30 check$=MID$ (outputfile$, 1,3)

35 IF check$=".co"OR check$=".CO"
OR check$=".Co" THEN console=1

4o IF console THEN HOME

45 ON EOF#1 GOTO 65

47 INPUT"record number to dump:
".rec

48 IF rec=0 THEN 65

50 INPUT#1,rec; a$

55 PRINT#2;a$;

60 GOTO 47

20

65 IF console THEN HPOS=1:VP0OS=23
70 CLOSE
75 END

This program is very similar to the
previous program except that line 47 asks
for the specific record to dump, line 48
gives us a way out by checking for zero,
and line 50 has been modified to read
directly to the record number previously
entered.

Some experimentation with this program
will produce interesting results. Try
reading records 1,6,12, and 18. In each
case, you will cause a disk access
(whirring is a clue) to read the
particular record. Now try reading
records 6,7,8,9, and 10 in any order you
choose, The first record you read will
probably cause a disk access, but the
others should occur virtually
instantaneously without causing disk
activity. This is because SOS is still
buffering flies in 512-byte blocks, and
all those records fall within one block.
There was no need to reread the disk
because the data was already in memory.
Careful planning of your record sizes and
reading sequences can have the effect of
substantially increasing the performance
of your program, if as many reads as
possible occur within the current buffer.

One interesting postscript before we
proceed: If you ask for record 6 there
will typically be a disk read, as we've
said. If you immediately request record
5, another disk read will be performed.
This is what you might expect, but more is
going on here than meets the eye. Simple
calculation will prove that record 6
actually occupies space in both block 1
and block 2 of the file. The first six
records, 0 through 5, occupy 6*81 or 486
bytes of the first block, leaving only
twenty-six bytes in that first block for
record number 6. The remaining fifty-five
bytes are in block 2.

Thus a read to record 6 actually triggers
two disk reads, one to load in block 1 for
the first part of record 6, and one for
block 2 to obtain the remainder of the
record. Therefore, when you requested
record 5, Basic had to go back and reread
block 1 (remember, only one block is kept
in memory per file).

A little more arithmetic will show which
other records are in this same situation.
The moral is simple: if possible, make
your record sizes such that they evenly
divide into 512 or are a multiple of 512.
That may waste a little space, but the
waste may be more than compensated for in

the ability to predict when disk access
will take place.

A Final Challenge. We just reviewed the
last five or six paragraphs and discovered
that our usual humorous style has been
replaced by long, detailed discourses of
unrelieved tedium. There is,
unfortunately, no letup in sight.

To this point we have been using "record
number" files (called random access by
most people) with record numbers that span
a rather narrow range. SOS permits random
files to have record numbers in the range
of 0 to 32767. However, SOS does not
demand that a file actually have all the
records present on the disk. Records are
allocated as written, with only a little
space taken up to keep track of where
everything is. To illustrate the power

this gives, consider the following

problem:

A distribution company wants to keep track
of their part numbers and descriptions.
The part numbers are four-digit numbers.
Following is a simple program to create

the part number file.

Between now and next time, you could try
writing a program to retrieve part number
information randomly and make changes as
required. Without further ado...

HOME

10 PRINT"Parts file Create and
Add program"

20 PRINT

30 PRINT"Type 1 to Create a parts
file":PRINT

40 PRINT"Type 2 to add to an
existing parts file"

50 PRINT:INPUT"Your selection:";
a$

60 IF a$=""THEN 1000

70 a=VAL(a$)

80 ON a GOTO 100,400

90 GOTO 5

100 PRINT:INPUT"name of new parts
file:";a$

110 IF a$="" THEN 5

120 CREATE a$, TEXT, 64

130 PRINT"Parts file ";a$%$;
"created."

140 GOTO 5

400 PRINT:INPUT "Name of existing
parts file: ";a$%

410 IF a$="" THEN 5

420 OPEN#1,a%

430 HOME

500 PRINT:INPUT"Part number to

add:";a$

510 IF a$="" THEN 5

520 a=VAL(a$)

530 IF a<1 OR a>»32767 OR INT(a)<>a
THEN 500

535 rec=a

540 rec$=as+"®"
545 PRINT:INPUT"Description: ";a$

550 IF LEN(a$)>30 THEN a$=MID$
(a%$,1,30)

560 rec$=rec$+ap+"®"

570 PRINT:INPUT"location:";a$

580 IF LEN(a$)>10 Then a$=MID$%
(a$,1,10)

590 rec$=recs$+ap+"e"

600 PRINT:INPUT"Quantity on hand:
l|;a$

610 a=0: a=VAL(a$): IF INT (a)<>a
THEN 600

620 rec$=rec$+a$+"®"

630 PRINT:PRINT"Record is:";rec$;
" OK? ",

640 INPUT"";a$

650 a$=MID$(a$,1,1):IF a$<>"y"
AND a%$<>"Y" THEN 430

660 PRINT#1,rec;rec$

670 PRINT:PRINT"Record added."

680 GOTO 430

1000 PRINT:PRINT"End of parts file

program."
1010 CLOSE
1020 END

This does not presume to be a model
program in terms of its error checking,
efficiency, or even logic design (note all
the Gotos, patently offensive to the

initiated). We tried to keep the program
simple and straightforward, allowing
plenty of room for improvements. One or
two things are worth pointing out to help
you with your inquiry program. Singe each
field could be of varying length within
certain limits, the backslash character is
used to delimit each item. You'll want to
strip these out when you retrieve the
record. Look up the function Instr; it'h
make it easy.

21

Once you've typed this program in, trying
it out can be interesting. Try several
values for part number, including some
larger ones (greater than thousand, at
least). Unless you add records that are
sequential, each one will probably trigger

a disk access as the appropriate block is
written to disk. After adding several,

get out of the program by typing Return to
the part number and selection prompts and
check out the catalog entry on the file.
Assuming you used the name MY.PARTS as a
file name when you used the create option,

the entry will look something like figure
3.

TYPE BLKS NAME MODIFIED TIME

TEXT 00007 MY .PARTS 00/00/00 00:00

CREATED TIME EOF
00/00/00 00:00 85376
Figure 3.

Look at that EOF value! It seems that you
have a huge file until you notice that the
Blocks Used column is still pretty small.
What SOS has done is report the EOF at the
end of the highest record number you used,
while allocating only those blocks that it
actually needed. Some micros (and some
mainframes, for that matter) would require
that all the blocks be allocated before

any could be written.

Well, have fun until next time. Then
we'll try to lighten it up a little as we
talk about the mysterious data file type
and start using the massive amount of
memory in the Apple /// for some really
fast indexing schemes. Before this series
is over, you should be able to write some
pretty hot database programs. Till then,
ponder the following: Is it true that
disk-based programs are written by
BLOCKheads?

22

Printing Mailing Lists on One Line
Continued from Page 8

Deleting all of the explanatory comments
our program looks like this:

BEGIN B

JEZEDWELTN

F<[=]<KA

F<@1@<.CRP>.LM15>.RMI5><A
F<@2@<.LM+25><A

F<@3@<.LM+30><A

F<R4Q@<. LM+H16><A

F<T@5@<. LM+3><A

F<~@6@<.CR1><A

PNP

Which we saved as "KENS.ONE.LINER". To
execute the program, once we have loaded
the list we want to print out, into Apple
Writer ///, all you have to do is type
[P]DO .D1/KENS.ONE.LINER<KRETURN>.

In the next issue I will show you how to
execute the program faster and build in a
prompt requesting the name of the list
you want to print out on one line.

Your comments and questions regarding
Apple Writer /// Word Processing Language
are welcome. In addition if you have a
special routine you have developed, send
it to us on diskette with lots of
explanatory comments.

Back Issues

Open Apple Gazette

Volume 1 Number 1 $ 3.00
Volume 1 Number 2 $ 4.00
Mail requests for back issues to:
Open Apple Gazette

P.O. Box 813

San Francisco 94101

Recovering deleted or damaged files.

Have you ever deleted a file such as a
VisiCalc Model, or an important letter
from a diskette then suddenly realized
that you needed the deleted files after
all. When you delete a file (VisiCalc
Model, Appie Writer file, etc.) from a
diskette you are actually just deleting
it from the diskette directory. As long
as you have not added anything to the
diskette since your deletion your
original file is still intact on the
diskette.

Well one of our members, Mike Weathers,
has a solution for you. For $ 20.00 per
diskette plus postage Mike will recover
your data for you.

Mike is also able to recover files which
are lost when the directory on a diskette
is damaged.

His address is as follows:

Mike Weathers
PO Box 1865
Morganton, N.C.
28655

111

Vanloves Program Writer/Reporter

Vital Information--yes, the same people
that brought you the Vanloves Software
Directory--have released an interactive
database code generator for the Apple

111

According to Vital Information, Program
Writer was developed because of the great
demand that the software industry is
placing on programmers. As a publisher,
they have received many calls from
potential computer users requesting
non-existing software applications. They
feel--and rightly so--that most
programmers don't have a thorough enough
understanding of the business they're
programming for to develop programs that
meet the needs of the business community.

Program Writer allows the user to answer
a series of logical English questions

such as: what does it look like, how long
is it, what calculations are needed, what
data to accept, what data not to accept?

Program/Writer will then write a custom

program based on the data input. If this
program does what it claims, then it
certainly would represent a giant step in
the right direction of communicating with
computers.

Program Writer can handle records of up
to 3,000 characters. The number of
records that can be stored is limited
only to the physical size of the storage
device used (either hard disk or floppies
are supported). The display screen is
user-definable, this and the complete
printer output control allows the user to
use pre-printed forms. Calculation and -
mathematical computation ability is
reportedly unlimited. You can write as
many programs as you wish and the object
codes can be edited. Searches can be
instituted by any field or range within a
field (for example, you can lookup cities
with a population size of between 50,000
and 750,000). Records can be deleted or
updated. Files are interactible, meaning
that if one record is updated an
inventory file is automatically adjusted
to reflect the change. Field entries can
be protected from erroneous input.
Standard database reports are available:
selected report print-outs, checks,
invoices, mail lists and sales data.

The description of this program fits a
powerful database program. The addition
of easy English commands should make it
easy to learn. Program Writer is written
in BASIC which is not really a suitable
language for large-record file
processing.

Price is $200.00 for Program Writer and
$99.00 for Program Reporter.

Apple Support Line

For those of you who encounter many
seemingly unsolvable problems there is
help! Apple Computer has a support line
which can help solve some of those
mysteries. At the other end of
408-745-6731 are some very helpful people
who can assist you with almost any
problem. Of course, computers can be
mystifying to even their own makers so
don't expect them to solve everything.
Problems with programming logic, for
instance, are better left to text
materials.

23

opan appla (x
qqzc".)trge

PO BOX 813 SAN FRANCISCO 94101

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

