
opczn a~plcz ~ /1/1/1

qazcz~tcz ~0~
Third Ed ition Volume 1, Number 3 July /August 1982

You are looking at the "new" OPEN APPLE GAZET rE newsletter. This is the product of th e
merger between the APPLE THREE newsletter and th e OPEN APPLE GAZETTE. To those
subscribers of the APPLE THREE thanks very much for your patience . We believe that the
wait was well worth it. What you are r ead ing is but one step in the right direction.
With each issue OPEN APPLE GAZETTE will improve, in our quest to continually bring you a
better publication. Our next issu e will have a new look on the cover.

Due to the difficulty of merging two newsletters with d if ferent schedules it was decided
to withhold publishing the second issue of APPLE THREE. APPLE THR.Et:: subscribers will
receive the second issue of th e OPEN APPLE GAZETTE instead. This is bound to create
some confusion so an explanation is included for those subscribers.

The reason for doing this w21s clear: by combining th e two newsletters we could pool
resources and produce a better and more expanded product. An immediate benefi t is that
the OPEN APPLE GAZETTE will be published on a more regulrlr basis . The othe r obvious
improvements in quality and service are expected to benefit a ll OPEN APPLE GAZETTE
readers. Those few readers that are duplicated in our lists will receive a refund for
their APPLE THREE subscription. All APPLE THREE subscription requests that included
orders for back issues: the extra funds will be applied to your 1983 subscriptions.

All readers please note: with this issue we are dedicating the new "APPLE Ill NETWORK".
This bulletin board is for use by Apple I I I owners only. To access this board you h ave
to dial 415-928-0412 and follow th e log-on procedures. The password for th e following
months is TANGO. We will periodically change the password so that only ORIGINAL APPLE
I I Irs members will have access. Please note that the bulletin board only supports
communications at 300 baud.

We are looking for user contributed software to offer to users as public domain Apple
I I I software. Additionally if you have programs with commercial va lu e le t us know and
we will sell it to other members and pay you a royalty.

We thank you for your support and contributed articles. Keep them coming.

ortqtnal applcz /// rs

Original Apple ///rs

CLUB INFORMATION

MEETINGS

Meetings
Wednesday
the Board

are held at 7:30 PM on the third
of each month. The location is

Room of the California Bar
Association offices at 555 Franklin St.
San Francisco.

MEMBERSHIP

Annual membership
date application
payable to the
be mailed to the

dues are $25 from the
received. Your check

Original Apple ///rs may
address below.

OPEN APPLE GAZETTE POLICY

All manuscripts, photographs, and other
materials are submitted free and released
for publication. They become the
property of the Original Apple ///rs and
the Open Apple Gazette. Authors should
clearly mark all material submitted for
publication so that credit may be given.
The publishers/editors do not necessarily
agree with, nor stand responsible for,
op1n1ons expressed or implied by other
than themselves in this publication.
The Original Apple ///rs is a non-profit
organization comprised of, and supported
by, Apple /// owners and users. The
Original Apple ///rs is run by volunteer
officers and committees, and the club
endeavors to aid other Apple users
through this educational publication
"OPEN APPLE GAZETTE". Address all
inquiries to: Original Apple ///rs, P. 0.
Box 813, San Francisco, CA 94101.

REPRINT POLICY

All articles appearing in the Open Apple
Gazette not copywrited by the author may
be reprinted by another non-profit Apple
user group so long as proper credit is
given to both the Open Apple Gazette and
the author. Proper credit is defined as
article title, author, and the words
"Printed from VOL X, NO Y of the Open
Apple Gazette." Permission to reprint a
copywrited article may be obtained by
writing to the author c/o the Original
Apple ///rs.

2

PRESIDENT
673-7635

VICE PRESIDENT
521-1771

TREASURER

SECRETARY
386-8623

CONSULTANTS

OFFICERS

Don Norris (415)

Kent Hockabout (415)

Julia Amaral

Charles Coles (415)

Randy Fields
Ken Silverman

Ill

ARTICLE SUBMISSION POLICY

The Open Apple Gazette welcomes any and
all articles dealing with the Apple ///
Computer and its associated hardware and
software. Articles may be submitted
doublespaced and typewritten, or on the
APPLE WRITER/// word processor.
We will send your disk back to you as
soon as we output the article on our
printer.

Public Domain Software for the ///

Public domain software for the Apple][
was undoubtedly one of the primary
reasons for its success. This software
enabled owners to learn more about their
machines and how to use them profitably.
Public domain software for the/// has
been slow in coming but here are some of
the first that are available. The
Applecon program from Apple Computer Inc.
will greatly add to the library of public
domain software for the ///. You can
help with this by sending us programs you
have converted to or written for the///.

Applecon from Apple Computer Inc.

Applecon is a new utility for the Apple
Ill which converts Applesoft BASIC
programs to Apple /// Business BASIC
programs to the extent that they can be
machine converted. This program will not
convert any copy protected programs or
diskettes. This utility will take an
Applesoft (Apple II) program and move it
up to SOS and into Apple Business BASIC
and then will make the proper changes.
Those lines it cannot convert directly

into Business BASIC will be flagged into
a REM statement for you to correct. The
disk comes with several pages of
documentation on the disk in a text file.
The file can be read by Apple Writer///,
or you can output it via the Pascal
System.

File Cabinet ///

This is a small general purpose data base
management system written in Business
BASIC. The use of File Cabinet /// is
simple and most of it is self
documenting. File Cabinet provides a
means of interactively defining data
files, entering data, sorting, retrieving
records containing specific data,
deleting records, and printing reports.
Because all of the data in File Cabinet
is memory resident the size of the data
base is limited to a relatively small
amount but the handling of this data is
very fast.

DOS to SOS text File converter.

This program enables you to move DOS 3.3
text files to SOS. It is useful in
moving VisiCalc Models from the][to the
///. If you own Apple Writer the Apple
Writer Utility diskette already will do
this for you.

These diskettes
for $8.50 each.

are available to members
Non Members $10.00.

add $ 1.00 for Canadian
postage,
postage.
the:

Residents
add $2.00
Make your

for other foreign
checks payable to

Original Apple ///rs
P. 0. Box 813
San Francisco, CA
94101

-Ill-

CP/M On An Apple 1//

By : William C. Jacobson

The CP/M Softcard marketed by Apple has
finally arrived, permitting owners of the
Apple I I I access to the vast amount of
software available for this business
oriented operating system. As touted by
Apple, Owners of the I I I now can use DOS
SOS, and CP/M on their marvelous '
machines.

I purchased one of the first copies of
the Apple Softcard System available in
the Washington, DC area, and would like
to relate some of my initial experiences
with it.

While it will be sometime before I can
classify myself as an expert in matters
CP/M, I have been able to wend my way
through its special command structure
with a minimum of problems.

One of the first questions I had about my
new Softcard was the existence of any
unique features that distinguish it from
its many relatives. As far as I can see,
there are no special CP/M related
functions of significance. It simply
allows me to access CP I M.

Having said this, however, must qualify
my comment in two respects:

The SOSXFER function of the Softcard
does allow transfer of ASCII files
from SOS (the resident Apple I I I
operating system) to CP/M ; and

It is as yet unclear what
applications programs (off the shelf
CP/M software) will work on the
Apple I I I.

The SOSXFER function continues the Apple
11 tradition 11 with the I I I of permitting
easy text file interchange between
operating systems. An important use of
this function involves the WordStar
program that I used to write this
article. I have been able to quickly
transfer Apple Writer I I I files to CP/M
for reformatting and modification. This
compatibility also extends to the
SpeiiStar spelling check software for
WordStar. I am now able to prepare ASCII
files using whatever word processing
software seems appropriate for the file
being created, and then use the special
features of WordStar and SpeiiStar to
ful,l advantage. This statement applies
both to Apple Writer and the powerful
Pascal text editor available for the I I I.
I assume that it would also apply to
Apple II files transferred with the Apple
Writer I I I utility disk, but I have not
attempted it.

The significance of SOSXFER is easily
illustrated. My teenage son is a writer

3

and finds Apple Writer I I I an excellent
program for composing articles. It is
very easy to use, so that he can
concentrate on what he is writing, and
not on the peculiarities of the software
he is using. However, he also likes the
formatting features of WordStar and the
spelling checks available with SpeiiStar.
With SOSXFER he can have all the
advantages of each.

There are still many questions about what
applications software will or will not
work on the Apple I I I, without major
adaptation. This article is testimony to
the fact that the Apple II version of
WordStar can be adapted, if you follow
the special instructions listed in the
Apple Technical Note on this subject
(Softcard Ill dated August 16, 1982).

While I intend to make extensive use of
the M-BASIC software that comes with the
Softcard, my primary interest is off the
shelf programs. Of particular interest
is the dBASE II data base management
system. I have sent a letter to
Ashton-Tate, the creators of dBASE, and
hope to receive a favorable response in
the very near future.

If some adaptation is required, the key
is instructions needed to make the
conversion. The Dynamic Debugging Tool
(DDT) feature of CP/M allows you to make
changes very easily, once it is clear
what you have to do. For WordStar, it
took me awhile to learn to use DDT, but
the actual changes only took a few
minutes. I hope that Apple will provide
Technical Notes for all popular CP/M
software, so that this may be a simple,
uncomplicated process .

Ill

A Funny Thing Happened On The Way To
The Perfect Program - Version 1.0

By: David D. Meisel

As a programmer with nearly 20 years of
experience (I started 11 hacking 11 as a
graduate student working toward a Ph.D in
astrophysics when IBM 6501s and 16201s
were considered 11 state-of-the-art 11 and
have been a slave of mainframes ever
since ! !) the advantages of the S.O.S.
that runs the APPLE I I I were crystal

4

clear. No more worry about assembly
coding, no more worry about where to put
the data and program instructions and no
longer would figuring out the I /0 seem
like working your way out of a bear pit.
At last, one could concentrate on
programming the problem that originally
forced you to buy the personal computer
in the first place. Although I had
programmed previously in ALGOL, FORTRAN,
and FOCAL (one of the original high level
interpreter competitors of BASIC
developed for DEC PDP-8 minicomputers), I
decided to be lazy and try BUS I NESS BASIC
for starters. If the program worked then
it would be easy to put it into a
compiled version using APPLE I I I Pascal.

Conventional wisdom says learn the
language through a tutorial style book
and then tackle the 11 official 11 manual,
but figuring I knew all the beginning
stuff I decided to get right down to the
reference manual. I went through the
manual and put index tabs at all the
appropriate spots so that I could find
the rules concerning each construct as
need them. (All reference manuals that
are really useful should be constructed
this way but few if any are these
days ••• APPLE take note.) These tabs will
take a lot of beating under most
circumstances so use ones that are
durable. Now armed with a 11 quick draw 11

version of the 11 bible 11 I was able to get
through most of the easier stuff in no
time at all.

Now, the APPLE I I I manuals are orders of
magnitude better than their mainframe
counterparts in virtually every way so
both the Owner1s manual and the device
driver manual looked straight forward and
with proper index tabs were found to make
things pretty easy for an old hacker like
me. While some of my friends (who after
months of ownership of other brands) have
still not been weaned from their owner1s
manuals , I -- the APPLE I I I guy--- was
whizzing right along in his programming.
So far so good.

Then I found my first snag. Breezing
right along I started to look for a way
to chain a whole series of programs
together. On p. 28 of the manual I
discovered the EXEC command. This great
little feature lets you chain by setting

up a text file of commands and then EXEC
the text file in immediate mode. The
thing that you are not told (until p.31)
is that the programs so referenced cannot

contain any INPUT or GET statements that
need stuff from the keyboard. Both of
~~ ap_Eropriate remedies are _given on
E~ E~.!. ..!_.!_ ~ou~ ~av~ been helpful if
these caveates had at lea""""Stbeen ---
flag_ged on _E.i8. For exampTe-:-Tn the

introductory paragraph it would have been
nice to have seen something like 11 ••••• by
allowing applications that do not require
ANY direct keyboard entry to be run in
sequential order. If keyboard entry is
required then an override feature is
available,but must be programmed into
each program itself.(see notes on p.32). 11

Score APPLE I I I one; Meisel zero.

Snag number two came somewhat later. As
an old FOCAL programmer, I was really
used to cramming as much on a line as I
could. After all line numbers do cost
memory space; it says so right on p.243.
Under the description about STATEMENTS on
p.47 it says 11 ••••• that a list of
statements may share one line number,
adjacent statements must be separated by
a colon (:) • 11 Fair enough, I thought, so
I went blindly on my merry way. At one
point in my program, I needed to be
able,on option, to switch out and do a
subroutine and then return to the middle
of the line. That seemed easy.

10 IF A$= 11 right 11 THEN GOSUB 80:A=B+C : IF
BB$= 11 wrong 11 THEN 70: B=C©2

The subroutine begins at line 80 and has
a RETURN in it. Straight forward
application of the statement in this case
will be wrong because in normal BASIC
without concatenation (i.e. statement
chaining on one line) the result of the
first IF statement does the subroutine if
A$= 11 right 11 and then goes to the next line
regardless of what comes next on the line
containing the IF statement. When it does
not work properly, you turn to p.107 and
in the first paragraph you find the
statement that indicates your problem - -

A false expression in the IF forces
a jump to the next line. O.K. ?????? Well
not quite. Take a gander at the examples
on p. 107. Opps ! ! ! !

11)IF SI4>=17*NOT 2 THEN GOSUB
3000: INVERSE:PRINT 11 HI 11 ••••

etc. 11

Thus instead of the machine doing only
the subroutine 3000 when the IF clause is
true it goes on and does the remaining
statements in the list as well. This is
just the opposite to the logic I was
applying.

Well, now the question comes up of how to
do what I originally intended, namely how
does one get an optional switchout and
return to do the rest of the line when
the IF clause is false ? A partial
answer is given on the next page where
the ELSE construction is introduced and
on p. 185 where the syntax references are
given for IF ••• constructions. The
examples given in the manual are very
poor, because it is not clear from them
whether the FALSE condition in the IF
continues execution of the other
statements in the line or not.
Furthermore, the insistence that the
11 :ELSE 11 is optional (p.108 and p.186)
when in fact for proper operation of the
compound IF ••• THEN statements it is
ABSOLUTELY ESSENTIAL ----- just further
aggravates the situation.

In the hope that it will save time and
effort for others, I offer the following
example of proper use of the compound
IF ••• THEN •• :ELSE statement.

5 INPUT A$
10 IF A$= 11 TRUE" THEN A=B+C+D :

PRINT A:GOTO 20:ELSE A=B-C-D:
PRINT A:GOTO 30

20 PRINT B,C,D:GOTO 40
30 PRINT D,C,B
40 END

In this example when A$= 11 true 11 then it
computes A, prints A, and then goes down
to print B,C, and D in that order. This
means that if the statement between the
IF and THEN is true everything between
the 11 THEN 11 and the 11 :ELSE 11 is done.
(Note that the GOTO 20 is not needed
because 20 is the next line number, but 1
have included it anyway.) IF A$ is
anything else other than the word 11 true 11

then the statements between the 11 : ELSE 11

5

and the end of the line are performed
including the printing of B,C,and D in
reverse order.

The logic of the construction is
perfectly sound, it is the explanation of
its proper syntax that is poor. I think
part of the problem is the fact that if
it really were intended for the construct
to indicate the nature of the operation
to be that as indicated in my example, it
is not really logical that the colon
occur as the delimiter of choice in the
"else" part. To me the construct "<space>
ELSE" would have been a better choice,
but of course this would not allow the
ELSE to have functioned like a REM
statement when the colon is omitted. (see
p.108) and ELSE is used before or
independently of the IF ••• THEN.

It is, of course, unrealistic to expect
manual writers to catch everything that
can be misinterpreted in their text, but
it seems a pity that a little sloppy work
in a part of what otherwise would be an
excellent text cannot be corrected before
reaching the consumer. Certainly the
APPLE I I I PASCAL manual has been properly
updated and revised, so why not the
Business Basic manual too!!!!! Until then
be especially careful with your
IF •• THEN •• ELSE uses and test each
carefully before assuming they work
properly.

- II I -

Apple I I I COBOL

Apple announced that come this Fall you
will be able to buy COBOL for the Apple
I I I. According to Apple Computer, Apple
I I I COBOL has been certified by the
General Services Administration's (GSA)
Federal Compiler Testing Center at
high-inte rm edia t e level, which is a
higher level than many of the COBOL
systems available today for
minicomputers.

One featur e of Apple I I I COBOL stands
out: Animator, a powerful
screen-oriented, source-level debugger.
Animator allows the programmer to run a
program one statement at a time or
continuously while watching its execution
which could give it applications in a
t eaching system. Animator provides an
"animated " view of actual program

6

execution, and it can stop program
execution at any time to allow for
checking and changing of data it ems. A
truly useful me thod of program debugging.
The full use of th e Animator r eq uires
256K of memory.

Another feature is FORMS-2, a COBOL
source-code generator which le ts th e
programmer b eg in with a blank screen and
end with a fully operational program.
FORMS-2 interactively creates dilta en try
screens and generates COBOL source for
use in a program. Price will be under
$500.

Pascal File Access Program

Record Process ing Services (RPS) is a
sophisticated, multi-key ed fil e access
program that saves Appl e I I I Pascal
software developers costly development
time . RPS provides fil e management
services for programs handling large
quantities of data. Programs built on
RPS can access each others' files for
data manipulation or interchange. Apple
is committed to RPS as its own Appl e I I I
access standard. RPS has the following
specifications :

--Maximum file size is 16 megabytes
--Has 6 access modes, 11 data types
--Permits up to 8 keys per file and

multi-fi e ld keys
--Supports variable and fixed length
--Utilizes B-Tree index structure
--Can scan multiple files

simultaneously
--Supports ProFile hard disk

RPS also provides 64 bit integer numerics
that are primarily designed for
accounting and business programs. This
data type allows users to work with

numbers as large as +I-
9,999,999,999,999,999,999 (9
quintillion?) a feature which prepares it
to handle future budget deficits. OEMs
must obtain a license --through Apple
Vendor Support--for resale or
distribution. Rel ease date is expected
to be in early fall with a suggested
retai I price of $150. Th e RPS
programming manual is available
separate ly for $30.

Printing Mailing Lists on One Line

by Don Norris

While Ken Silverman and I were returning
from the Minneapolis Computer Show and
Applefest, he asked me if it was possible
to us e Apple Writer Ill Word Processing
Language to print out Mail List Manager
lists with all of the data on one line.
Individual en tries printed out from Mail
List Manager will look like this:

Mr. Ken Silverman
International Apple Core
910A George Street
Santa Clara, CA 95050

Using the Apple Writer Ill Utilities
diskette and Apple Writer Ill Word
Processing Language I knew it was
possible to do just what he wanted.

Thriving on a challenge such as this, I
told him HELL yes . So here it is.

First, in order to use your Mail List
Manager lists with Apple Writer Ill you
have to convert Mail List Manager files,
which are stored as Pascal Data, to a
t ex t file which Apple Writer Ill will be
able to read. This is accomplished with
the Apple Writer Ill Utilities diskette.
Boot the Apple Writer Ill Utilities as
described on page 103 of the Apple Writer
Ill manual. In response to the prompt,
enter 3. Leave the Apple Writer Ill
Utilities diskette in Drive 1, press
RETURN. The light under Drive 1 will
come on for a few seconds, and the n you
~ill be prompted as follows:

MAIL LIST MANAGER TRANSFER
Drive numb e r of Mail List Manager
diskette:

Enter 2

The ne x t prompt you have is:

Name of Apple Writer Ill Volume:

Enter .D1<RETURN>

Put the Mail List Manager data disket te
into Drive 2, and the diskette you want
the list tra nsferre d to into Drive 1.
Press RETURN and the transf e r of your
Mail List Manager List will be made onto
the disket t e in Drive 1.

Boot Apple Writer Ill. Use (0] (CONTROL
0) to catalog the diskette you
transferred your Mail List Manager List
to and you will see that you now have a
file on the diskette labeled MLMDATA .
All Mail List Manager Lists that are
transferred to Apple Writer Ill t ext file
format are l a b e l e d this way. So to avoid
confusion you should change the name of
the file using the [0] (CONTROL 0) rename
file option . For example , you could
change MLMDATA to LIST1 .

Assuming you are using the Mail List
Manager Standa rd Format en tri es
transferred f r om Mail List Manager, when
loaded into Apple Writer Ill , your Mail
List Manager Lists will appear in the
following format:

<1>
@1@Mr. Ken Silverman
@2@International Apple Core
@3@910A George Street
@4@Santa Clara,
A@5@CA
A@6@95050
[1]<2>

In order to put this onto one line you
need to enter several a utoma t e d text
search and r ep l ace commands using [F] or,
to do it eve n faste r, yo u can write a WPL
(Appl e Writer Ill Word Processing
Language) program. [F] (Control F) i s
explained on page 36 in th e Apple Writer
Ill manual .

Apple Writer Ill Word Processing Language
allows you to c reate a prog r am which you
store as a file, that will au tomatically
make all of the c h a nges necessary to
printout your li s t on one line per entry .
That is, you do not have t o enter each
command separately for each change, nor
do you have to make notes for f uture us e
for changing other mailing lists to th e
same one line format.

For lack of a better name we will call
this program Ken's one liner . In keeping
with the SOS file name requirements it
will be saved as: KENS.O NE .LINER.

To exp lain exactly how this program
operates explanatory comments have been
inserted . This is done using P followed
by a space for inserting comments. Apple
Writer Ill Word Processing La nguage

7

ignores this, as explained on page 92 of
the Apple Writer/// Manual.

In these explanatory comments the number
in parenthesis refers to the page number
in the Apple Writer ///manual which will
provide you with additional information
for your reference.

This program assumes that the list you
want to print on one line has been loaded
into memory.

P Every Mail List manager e ntry has the
number of the entry at the beginning and
ending of each entry. Since we do not
want to print these out, they must be
deleted.
BEGIN B

P This places the cursor at the
beginning of memory
F'~<+> **A
P Thi~ line finds all of the first entry

numbers on your list, such as <1> and
de letes them as well as the RETURN, which
follows the >. (42)

P Our next project is to remove the
number a t the end of each entry. This is
done with the following line.

F< [=]«A
P Now you need to delete @1@ and print

the next lines of your mailing list on
the same line. You can easily delete the
@l @ with the following:

F<@l@«A
P This will solve part of your problem.

You s till need to have a ll of your
mailing list lines, 6 in this example,
print out on one line.

p In order to print each succeeding line
of your mailing list entry on the same
line as the first you need to change the
carriage r eturn va lue on the print
program values to 0. This is done by
embedding the following command into the
text, ".CR0".

P By changing CR1 to CR0, in the
Print/Program format values, your printe r
will not advance the paper one line when
a carriage r eturn is received. (58)

P Your marg ins for printer output will
also be se t with the text e mbedded
command ".lm15" and ".rm95". Remember
each text embedded command MUST be
preceded and followed by a RETURN.

P Both of these changes can be
accomplished with a single [F] command.
Which will become the next line of
KENS.ONE.LINER.

8

F<@1 @< .CR0).LM15).RM95><A
P This line says FIND @1@ and replace it

with .CR0 and a RETURN everywhere it
exists in memory from the beginning to
the end. Remember the cursor is a t the
beginning of memory. (40)

P Additionally, to have your list
printed in neatly formatted rows, you
have to move your left margin. In this
case I am moving the l e ft margin over 25
spaces with the ".LM+25" text embedded
command.

p Us ing [F] again I rep lace @2@, wi th
.LM+25 and a RETURN character.
F<@2@<. LM+25><A
p Now the left ma r gin must be moved over

30 more spaces to allow room for the
company name. Additionally the" @3@ " must
be removed. The following line will
accomplish this.

F<@3@<.LM+30><A
p Next the margin must be moved for the

City name, as well as deleting the @4@.
Here again [F] in the WPL program does
this for us.

F<@4 @< . LM+16)<A
P The next two lines will move the

margins and delete the unwanted
c ha racte rs for the Sta te and ZIP code .

FC@S@<.LM+3><A
F<A @6@< . CRl><A
p Notice that in this last line we have

reset the Carriage Return entry in the
Print / Program Command l eve l to "1". This
is because we now want t he printer t o
execute a line feed with the carriage
return.

p I f you do not change CR0 to CR 1
every one of the mail lis t entries wil l
print ou t on top of the first one.

p Now that everything has been changed
to the appropriate forma t l e ts print it
out. This was the whole purpose of this
program anyway . We do j ust that with the
following line.

PNP

Continued on Page 22

Business ForM Processor
froM

Applied Software Technology

INTRODUCTION

a review by
Gene Wilson

Reprinted from the Cider Press

This month we'll take a 'hard' look at a series of
programs called "VersaForm". This 'program' is so
extensive that it resembles sof tware found on
larger 'mini' computers , such as IBM's System
34/CMAS package (but we won't get into that her e).
VersaForm runs a hard disk version that takes
800+K. The review will be more like a two-pronged
probe. I'll spend most of my time looking at
what's available (in the form of a 'working' data
base example). Woody Liswood has also provided
some commentary in the form of an independent
'written review'.

SYSTEM CONFIGURATI ON
*BJTEF:M

Next month I'll look into the 'hard-disk'
capabilities in more detail (assuming that my
Corvus controller has returned from the
'factory' --one of these months I ' l l have to say a
few words about 'controller ' cards that have only
one chip on a 'socket' on the entire board--but
that will wait)!

CONFIGURATION

The most impor tant part of ' getting' i nto
VersaForm is to read and thoroughly understand t he
' System Configuration Program' . The true power of
VersaForm will not be seen unless things are done
correctly here. There are provisions for assign­
ing ' key-activated commands ' while in data entry
mode , and terminal initialization sequences . The
user can even have a 'standard' printer
ini tializati.on sequence , but still have the option
of entering a ' different' sequence at print time.
This allows printing some reports in 'compressed'
mode, while others can be in any other 'font' or
'size/style ' available on the printer (or inter­
face card) . The Configuration 'File' is named
BJTERM. BJTERM must be on every disk which will
be used as a ' boot' disk (DESIGN, FILING, REPORT,
and CPRINT) .

Prefix code for this terminal is: NONE

COMMAND CODE PREFIXED

Display the cmd mf?.nu
Validate
Get a fonn
~Jave a form
First for-m in f i 1 e
Last for-m in file
File space n~port
Pr-int cur-r-ent form
Calculator
Next form
Back to previou s form
Clear to blank form
Erase unvalidated data
Page for-ward
Page backward
Remove the current form
In d e:.: 1 i st
Delete a l ine
Cursor to command line
Duit - e/: it the program

Video reverse type : 0 <none)
Video reverse seq : NONE
Nor mal vide o seq : NONE
Terminal initia l ization seq :

Printer page width default
Printer page length defau l t

6' ·-· No
3 No
7 No

No
No
No

18 No
16 No

3 No
93 No

2 No
1 7 No

5 No
62 No
60 No
15 No

9 No
4 No

27 No
25 No

NONE

1 --:r \ ·-•..:...

66

9

As important as the 'Configuration' process is,
it's the LAST chapter in the User's Guide. (The
Guide is a document that you should read one time
then put it carefully away-far, far away.) There
is a very good Tutorial Disk, a 'Hands-On EKper­
ience' Manual, and a very detailed 'Reference
Summary'. Don't look f or configuration
information in the Manual or the Summary-it just
isn't there!

PHilOSOPHY

This isn't a major problem. The whole series of
programs called VersaForm are ALL set up with the
'non-computer-type' in mind . The menus are cl ear
and usually concise. The decision process is
straightforward, and there is ample opportunity
(in most cases) to 'back out' of a bad decision.
There need be no fear of making a mistake that
can't be rectified without losing many hours of
work . This quick experimentation can be a boon to
the person who isn 't entirely sure about the final
'look' or 'appearance ' of a report.

Fi.l e #11: TRUCk

Fi 1 e size : 1040 stor-·age units.

Printer does not have form feed
Printer does take LF a fter CR
Printer initialization seq: 27
Operator will be asked for
printer control sequenc e.

Display dummy data character is
Printer dummy data character is

Program volume names :

69

11_11

Vol name for Design pgm is DESIGN
Vol name for Filing pgm is FILING
Vol name for Report pgm is REPORT
Vol name for Copy / Prnt pgm is CPRINT
Vol name for Rptwrk disk is RPTWORf<

Default vol name for files is #5

Diagnostic mode is not set.

There are many other Data Base Progr ams on the
market. VersaForm fills a particular function
that lies somewher e between the very r igi dly
structured formats of DB Master, and the mind
bending task of learning another ' language ' with
dBase II . The other programs are great , but only
Versa}brm has allowed me the freedom to take a
'quick shot ' at form design or entry screen
formats. If I don't like the end result , it only
takes a couple of minutes to ' make it better '.

Mini. mum form s ize: 110 character-s, 1 s torage units.
Column line size: 0 characters
Estimated file capacity: 936 forms with no column lines.

DESIGNING THE FORM

This is the easiest part of the whole system.
Simply decide what goes where, answer questions
regarding range checking, length, justification,
if item i s mandatory, look-up table, calculations,
and automatic filling, etc . The program will ask
all the right questions, keep track of the
answers, and even give the user hard copy of the
whole session. Changes are easy to make, and the
input 'mask' can be made quickly (changed, modi­
fied, or drastically altered just as quickly!) .

Truck Ticket Entry Form:

Job -- Ticket # ------ Mo
Code -

Day -- Truck # ------

Owner --------------- Driver ---- ---------­
Gross Amt - - -------
Less Brok - - - - -----
Less PUC. - - - ------

Net Due.$---------

10

& Any letter of the alphabet is OK
Any digit 10-9) is OK
I Optional leading digit (0 -9)
? Any character is OK

Any other characters mean that only
the particular character will be
accepted in that position.

Format &&------------------

This item: Job-----------------

Semi
Hrs1
Rate
Tr#l
Amtl

10Whlr
------ Hrs2 -----­

Rate
49.50 Tr#2 46.30

------ Amt2 ------

CHECKING AND AUTOMATIC FILLING

Minimum-length 1-
Justify-IL/R/#) r
Numeric --- IYl y
Yes-or--·no --IYl

Maximum-length- ~

Selfchecking IYl -
Date ------- IYl -
Mandatory IYl y

EXTENDED CHECKS

Ranges IYl y
Format IYl

List IYl -

AUTOMATIC FILLING

Lookup IYl -
Calc - IYl -

Todaysdate
Column Total

This item: Mo------------------

RANGE CHECf< I NG

IYl -
IYl -

On each line type the limits of one
range. InpLit will be OK if it falls in
any ont~ r-ange. If you give only the
low (high) value, any input higher
Clower) will be accepted.

L# L.
01 1-

Low value
H.
12

High value

This item: Mo------------------

TABLE LOOKUP

The data for this item will be obtained
by looking it up in the table below.
The item to get the lookup value from
is: Item name Truck - #-------------

Look up Result
L# .• L..... . . .•. R •.•••
01 J-1------- BIG-'J'-TRKG---
02 J-2------- BIG-'J'-TRKG---
03 J-3------- BIG-'J'-TRKG---
04 J - 4--- ---- BIG-'J'-TRKG---
05 KB- 1------ BISHOF'---------
06 B-21--- --- BLANCHARD------
07 AC-1------ AL-CAIN--------
08 H-88------ CIRCLE-'H'-----
09 T-1------- DAVID-ROGERS---
10 DDL-1----- DDL-TRKG-------
11 DDL-6----- DDL-TRKG-------
12 DDL-7----- DDL-TRKG-------
13 H- 10------ HIGDON---------
14 H- 11 ------ HOSKINS--------
15 K-99------ F'&K- TRKG----- --
16 K-111----- F'&K-TRKG-------
17 R-15------ ROGERS---------
18 R-18------ ROGERS---------
19 R- 83------ ROGERS---------
20 0-1 ------- ROGERS---------
21 R- 97------ ROGERS---------
22 505--- ---- TEDS-TRKG------
23 T-1------- THOMAS---------
24 G-1------- GORDON---------
25 G-2------- GORDON---------

This item: Owner--------------- 11

We see that the item MOnth has a m1n1mum length of
one numeric character, a max. limit of two, the
number is right justified and it is mandatory (you
can't leave the item blank ann then save the
record) . low acceptable value is 1 and high value
is 12. Any number (or character entry) out of
this range will not be accepted.

Table lookup shows that automatic filling of Owner
and Driver are both t ied to the truck number. In
this dat a base, every truck number is unique.
This saves a great deal of time if much of the
data can be keyed to some common (but unique)
item. If there are over 99 items, the lookup
table is not going to provide you with a valuable
service (a limitation!) . The operator can enter a
value different than the one provided by the
lookup table.

The Net-Due item is calculated by the Gross-Amt
less the Less-Brok item, less the Less-Puc item.
Round off can be accomplished here as well. Dummy
(intermediate) items can be set up to accomplish
further manipulation of the data.

CALCULATION

The calculation may be made by adding,
subtracting, multiplying, or dividing
two items, or one item and a number.

Operations are +,-,*,I,LowiL l ,HighiHl

Operations

OF' 1: -
OF'2: -­
op:.:;: -
OF'4: -

Items/numbers
II: GROSS-AMT------ - ---­
I2: LESS-BROK----------­
I3: LESS-F'UC.-----------
I4: -------------------­
!5: --------------------

OF'5: - !6: --------------------

This item: Net-Due.$--------- - -

Look up Result
L# .•. L.... . •. R.... .
01 J-1------- BELL----------
02 J-2------- CAMF'BELL------
03 J-3- ------ BREAD---------
04 J - 4------- LUCAS---------
05 KB-1--- --- KARL-BISHOF'---
06 B-21--- - -- L. - ANDERSON---
07 AC-1------ AL-CAIN-------
08 H-88------ J.-CHRIS------
09 T-1------- D.-ROGERS-----
10 DDL-1----- BULLOCK-------
11 DDL-6----- W.-SMITH------
12 DDL-7----- BULLOCK-------
13 H- 10------ J.-HIGDON-----
14 H- 11 ----- - BEN-HOSKINS- --
15 K-99------ K.E.-JOHNSON--
16 K- 111----- KINNARD-------
17 R-15------ R.T.-EDWARDS--
18 R- 18------ B.-WELSCH-----
19 R-83------ SHELTON-------
20 0-1------- 0.-WEBB-------
21 R-97------ AF'ARICI0------
22 505------- T. - FORD-------
23 T- 1------ - ROGER-THOMAS--
24 G-1------- D.-MARSHALL---
25 G-2------- V.R.-GORDON---

This item: Driver--------------

FILING

No secrets here. Har d work is the only answer.
Just keep dumping data into the machine . The
program will make things as tol erable as possibl e ,
and a l ot of checking can be done to see that the
data entry is done pr operly . Har d copy of the
day' s activi ty can be obtained as well . Ther e i s
no reason to have faulty data if a reasonable
system of checks is maintained. The data entry
does not have to wait l ong periods while the
screen reformats between r ecords. The program is
fast in this area and won ' t slow you down .

Tr u c k Ticket En try For m:
Semi 10 Whlr

Job SA Ti cket # 1359-- Mo - 5 Da y 16 Tr uck # 505 --- Hrs l --8 . 25 Hr s2 - -----
Cod e B Rate Rat e

Own e r TEDS-TRKG------ Driver T. -FORD------- Tr #1 49. 50 Tr # 2 46. 30
Gr oss Amt ---408.38 Amt1 4 08. 3 8 Amt 2 --0.~)
Less Brok ----20 . 42
Less PUC. - ----0 .92

Ne t Due .$ ---387 . 0 4

1241 OWNER: CIRCLE • H" SEMI: 6.00 @ 49.50 297.00 BROSS AMT: 297.00 JOB: SA DRIVER: J. CHRIS 10WL: @ 49.50 LESS BROK: 14.85 5/10/ TRUCKtt: H-88 LESS PUC: 0.67
=======z=========== CODE:C NET DUE: $ 281.48

1359 OWNER: TEDS TRKS SEMI: 8.25 @ 49.50 408.38 BROSS AMT: 408.38 JOB: SA DRIVER: T. FORD 10WL: @ 49 . 50 0.00 LESS BROK: 20.42 5/16/ TRUCKtt: 505 LESS PUC: 0.92
=================== CODE:B NET DUE: $ 387. 04

1361 OWNER: TEDS TRKS SEMI: 3.00 @ 49.50 148.50 BROSS AMT: 148.50
JOB : SA DRIVER: T. FORD 10WL: @ 49.50 0.00 LESS BROK: 7.43
5/17/ TRUCKtt: 505 LESS PUC: 0.33

========x==========
CODE:B NET DUE: • 140.74

1945 OWNER: HIBDON SEMI: 7.75 @ 49.50 383.63 BROSS AMT: 383.63
JOB: SA DRIVER: J. HIBDON 10WL: @ 49.50 - 0.00 LESS BROK: 19.18
5/30/ TRUCKtt: H-10 LESS PUC: 0 . 86

========a=====a====
CODE:C NET DUE: $ 363.59

2175 OWNER: ROBERS SEMI: 4.50 @ 49.50 222.75 BROSS AMT: 222.75
JOB: SA DRIVER: SHELTON 10WL: @ 49 . 50 = 0.00 LESS BROK: 11. 14
5/11/ TRUCKtt: R-83 LESS PUC: 0.50

================~~=

CODE:B NET DUE: • 211.11

2187 OWNER: GORDON SEMI: 7.75 @ 49.50 383.63 BROSS AMT: 383.63
JOB: SA DRIVER: D. MARSHALL 10WL: @ 49.50 0.00 LESS BROK: 19.18
5/15/ TRUCKtt: S-1 LESS PUC: 0.86

===•=s==••====•==c=
CODE:B NET DUE: $ 363.59

2188 OWNER: GORDON SEMI: 7.25 @ 49.50 358.88 BROSS AMT: 358.88
JOB: SA DRIVER: V.R. GORDON 10WL: @ 49.50 o.oo LESS BROK: 17.94
5/30/ TRUCKtt: S-2 LESS PUC: 0.81

===•~=====a==-==~=

CODE:B NET DUE: • 340.13

12

B/15/82 TRUCKING SU""ARY-BY OWNER

Truck Driver Ticket Hrsl Hrs2 Gross Aat Less Brok Less PUC. Net Due. S

ROGERS 61.25 3031.90 151.60 6.82 2873.47

TEDS TRKG 505 T. FORD 2407 5.00 247.50 12.38 0.56 234.57
10 TEDS TRKS 505 T. FORD 2406 8.00 396.00 19.80 0.89 375.31
II TEDS TRKG 505 T. FORD 2405 5.00 247. so 12.38 0.56 234.57
15 TEDS TRKS 505 T. FORD 2403 8.00 396.00 19.80 0.89 375.31
16 TEDS TRKS 505 T. FORD 1359 B. 25 408.38 20.42 0.92 387.04
17 TEDS TRKS 505 T. FORD 1361 3.00 148.50 7.43 0.33 140.74

TEDS TRK6 37.25 1843.88 92.21 4.15 1747.54

T-01 2559 4.75 219.93 11.00 0.49 208.44

THOIIAS TRK6 4.75 219.93 II. 00 0.49 208.44

REPORT CONTROL INSTRUCTIONS 351.25 10.25 17861.56 893.08 40.20 16928.28

FILE ttl 1: TRUCK, REPORT TEMPT1

Page width 132
Page length 66
Title:
Print:

Day
Ticket * B/15/82
Owner
Driver
Truck * Da Ticket O•ner Driver Truck Hrsl Hrs2 Gross Aat

--------------- --------------
Hrs1
Hrs2
Gross Amt

Sort:
Day ascending> K.E. JOHNSON K-99 6.25 309.38
Owner ascending>
Truck * ascending> 6.25 309.38

Subtotal control:
Day

Total:
Hrs1 10 2554 BIG 'J' TRKS CA"PBELL J-2 7.50 371.25
Hrs2 10 2557 BLANCHARD L. ANDERSON B-21 1.00 49.50
Gross Amt 10 1241 CIRCLE 'H' J. CHRIS H-88 6.00 297.00

10 3493 DDL TRKS 11. smH DDL-6 7. 75 383.63
10 2555 GORDON V.R. GORDON 6-2 7 .so 371.25
10 12174 ROGERS SHELTON R-83 8.25 408.38
10 2406 TEDS TRKS T. FORD 505 8.00 396.00

10 46.00 0 2277.01

II 2504 Al CAIN AL CAIN AC-1 2.00 99.00
II 2558 BIG 'J' TRKS CA"PBELL J-2 4. 75 235.13
II 2422 GORDON D. "ARSHALL 6-1 2.00 99.00
II 2175 ROGERS SHELTON R-83 4.50 222.75
II 2405 TEDS TRK6 T. FORD 505 5. 00 247.50
II 2559 THO"AS TRKG ROSER THO"AS T-01 4. 75 219.93

II 13 18.25 4. 75 1123.31

01 1 2 3 4 5 6 7 8 9
02 4567890123456789012345678901234567890123456789012345678901234567890123456789012345678901
03
M 1 2 3 4 5 6 7 8 9
05 4567890123456789012345678901234567890123456789012345678901234567890123456789012345678901
06

JOB:**
fl

OWNER: *************** SEHI: ****** @ 49.50
DRIVER: **************10WL: ****** @ 49.50
TRUCK#: ******

GROSS AHT:*********
LESS BROK:*********
LESS PUC: *********

CODE:*

REroRTS

The standard repor ts are handled well. Si mply
move the cursor around the entr y screen and indi­
cate which items will be printed (and the order of
printing) . Subtotals , item totals , and sorting
criteria are all est ablished in a fast, straight­
forward manner. Changes are easily made .

The real challenge is to design a 'pre-printed'
form, one whi ch has very critical locati ons f or
data . The tools pr ovided incl ude a numeric scale
and a 'dummy' record can be printed to the new
form with data represented as '*' s . Maximum
fields are laid out so no doubt exist s as to what
will appear. Text can be added to every printed
form to further clarify the data that i s output .

Reprinted from the Cider Press

Versa Form

Business Form s Processor

Review (c) copyright by Woody Liswood 1982

Publis hed by :

Systems:

Applied Softwa r e Technology
15985 Gr eenwood Road
Mon t e Sereno, Ca . 95030

Apple II and///
Also Hard-Disk versions

Ve r saForm does just t hat . It creates , a nd
l ets you use almost a ny type of form t ha t
yo u might need. Invoices , packing s lips,
point -of-sale receipts, personnel records
a r e all easy to create a nd use. The
f l exibility s hown by the program also
a llows you to c r eate "mini data management
systems" (my quo tes). However, before you
j ump into the data management area you
s hould create and use a few form appl i ca­
tions so t hat you are familia r with t he
way t he program thinks .

14

=================
NET DUE: S*********

The whole idea of having a data base i s to be able
to stor e and manipulate the dR.ta. The r eport
module allows the data to be displayed in almost
any imaginable format, on pre- printed forms, in
many different sorting orders, and different com­
binations of dat a can be readily compar ed .

SUMMARY

VersaForm is a valuable tool. While not capable
of handling the 'huge ' data base applications
occasionally required, it DOES handle the bulk of
jobs that exist . The program is f ast , efficient ,
well written, and well executed. The User ' s Guide
randomly seeks to pr ovide informati on , and should
only be used if all other means f ail. The program
will prove to be a real joy f r om the standpoint of
just 'powering-up' and 'creating'. This is one of
the few programs that deserves to be on every
business user's shelf.

VersaForm comes packaged in a box with a
somewha t easy- to- read and use manual ,
very useful reference summary, a hands on
experience book (which yo u shoul d
de f initely do first) and six disks. Yep ,
6 separate disks .

FEATURES

Ve rsaForm is a PASCAL based system . I t
stores it ' s da ta as "fo r ms" ra ther than
what a da ta ma nagement system would call a
r ecord . These fo r ms can have single
items , s uch as name , date , address, e t c .
They a l so can have column data such as
pa r t number, descript ion, etc . There i s
also the capa bili ty to have a data entry
mask to check da ta as i t is entered . Yo u
can requi re fields that must be filed in ,
have only numbers , dates , s pecial formats
such as phone numbers , specifical ly for­
matted numbers , social securit y number s or
special types of par t numb ers. You can
also have a list of separ ate e ntr i es which
can be a llowed or you can s pecify a range
for the entry val ue.

There is automatic calculation during data
entry and printing. You can, for example,
enter in a part number, VersaForm will
then look up and enter in the description
and the price, then multiply the price by
the number purchased and put that in the
cost column. Then, when that invoice is
completed, it will automatically compute
the tax and total the entire purchase and
print the invoice for your customer.

Since this is PASCAL, VersaForm also works
with your 80 column boards so that you can
have what you see is what you get type of
form to use .

According
test) it
files so

to the documentation (I did not
creates standard Apple Pascal
that you can use your data in

other programs .

EASE OF USE

I found the program rather easy to use.
It, however, has so many features that you
should spend a session or two with the
manual, the hands-on-experience disk and
try a thing or two, before you jump in and
start a important application.

The only part of the program, in my
opinion, which will cause some head­
shaking is the report generator . That is
not because it doesn't work, but because
it gives you many, many options. And the
Documentation does not always seem to be
clear.

CRITICISMS

I could not find any problems with the
program. No bombs, crashes or any of those
things . When you use it to do forms, you
will be very happy. When you use it as a
data management system, you will need to
be careful in your conceptualization
otherwise you will find that it is not
doing things just quite the way you
expected.

My only criticism is that it does not do
sub-total page breaks in the report
writer . This made the program less that
useful for creating reports when I was
trying to use this as a data management
system rather than a form generator.
Otherwise, like I said, no problems.

DOCUMENTATION

The documentation is well written . It is,
however, rather hard to find things in .
Many important points are just kind of
mentioned here and there. Things like
maximum number of records, can the files
span multiple disks, and other important
goodies are not all in one place. The
best way to approach this manual, is to
read it once. Then sit down and go the
examples in the manual while you are
sitting at your computer. Make certain

that you have a yellow high-liter and a
pencil . You will need to make notes as to
the features . And, since the instructions
are scattered all over the place, you
should hi-lite the commands with the
yellow pen. Then, when you need to refer
back to the manual you can find what you
need. I didn't the first couple of times
I used the program. And I wasted much
time trying to find things. The problem
is that this program has so many features,
you will need to spend lots of time with
it before you have memorized all of the
commands.

HOW-IT-WORKS

The six disks which come with the
are:

system

l. Design program disk.

2. Filing program disk.

3 . Report program disk .

4. Copy/Print program disk.

5 . Tutorial disk.

6. Report work disk.

CREATING A FORM

The forms generator is a pleasure to use .
You put the Forms design disk into the
drive and a Pascal initialized disk into
drive two and away you go . Only now you
are using drives #4 and #5 because Pascal
uses those external device names for the
first two disk drives . If you need to,
you will have to initialize some disks for
use. There are specific instructions
about how to do that so don't worry.

In fact, when you boot the forms
disk , you will be given a 4 item
Forms design, System configuration,
tialize diskettes or name diskette .

design
menu.

Ini -

When you chose Forms Design, you go to
another four item menu for copying an
existing design, changing a existing form,
designing a new form, or printing a form
definition .

VersaForm will let you place Text or what
'they call Items anywhere you want on the
screen. Text is the labels you have for
your data fields . Items is the actual
data field. You do your forms design by
moving the cursor around the screen and
typing letters and dots. The dots
indicate a data field. Here ' s an example .

If you wanted a heading at the top of your
page, you would cursor over and type in
the heading. It could be your letter­
head, or whatever .

Then, you might say :

15

Bug Report

There is a bug which occurs in Mail List
Manager when one tries to filter a mail
list. Should you--for example--want to
filter those names from a list of 300 of
computer owners that own an Apple I I I,
Mai I List Manager wi II for some
unexplained reason will truncate the
output so that you end up with an
incomplete list (typically the last few
names are deleted).

As soon as Apple finds the cure for this
bug, it will notify all Mail List Manager
owners.

One reader, Craig Stauffer from
Sunnyvale , contributed this error in the
Universal Parallel Interface Card manual:
on page 9 in the third paragraph from the
bottom the sentence reads •••• and the Add
a Driver function.... This should read
"Read a Driver". Add a Driver is old SOS
terminology used in early versions. The
Silentype I I I manual--which is the oldest
manual in the Apple I I I system--for
example refers to "Add a Driver"
countless times.

V isiSchedule
If y ou use a p eriod in a v o lume
(di sk ette) name , Vi s iSc h ed ule will n o t be
able t o load any fil e s you have saved on
th e diskette. This means you have to
boot the Utilities diskette and r ename
the volume in order to use the files you
have saved.

SOS Pathname convention s all ow the u se of
a peri od in v o lume n ames . T h e
VisiSchedule manual on page 2-16, has an
example of a volume name with a period in
it. Hopefully VisiCorp will c orrect this
and foll ow the SOS Pathname conventions,
rath er than establishing their own
conventi on s . By f o llowin g the SOS
pathname convention s it will h e lp mak e
all App le I I I softw ar e mor e u se r
fri endly.

16

Printe r set up string s fo r se tting the
left margin do not work. To se t up t h e
left marg in using a Qume Sprint 9 , boot
Visi C al c . Then with t h e printe r on,
ente r the following: I PP"(then the n u mber
o f spaces y ou want f or the le ft
mar g in) <RETURN>. The printer head wi II
n ow move ov er t o y our desired left
marg in. As long as y ou leave the prin te r
ON and do not RESET i t, the printe r will
always use this n ew sett i ng for a lef t
marg in.

Quick File ///

This new file management program is said
to provide users with a filing system to
help in managing small or medium-sized
databases of less than 600 records on the
Apple I I I. Aimed at users such as
doctors, owners of small businesses, or
scientists, the program allows simple
arrangement of records in alphabetic,
numeric, or chronolog ical order. For
personal use Quick File can keep track of
investments, collections, personal
inventory and financial records. The
program is divided into three menus:
Main, File and Report. The user
interface has been improved by allowing
one to view two records by simply
pressing two keys to switch between
displays. Furthermore the program makes
extensive use of the Open Apple key plus
a letter to execute functions (Open Apple
+ A arranges records in file). In
addition to the above Quick File has the
following features:

--simple form design
--users can add or delete categories

without having to re-input stored
data (15 cat. max)

- -Quick File can search and display
records by chosen categories

--records can be displayed or
summarized simultaneously (one
derived column)

The cost of Quick File I I I is $100.00

The Third Basic

By: Taylor Pohlman
Reprinted from Softalk Magazine

When last we left the Lone Ranger, huge
boulders were crashing down the slope
toward his tiny campfire •••• No, Pm sorry
to say that the September column wasn 1t
quite that breathtaking or cliff-hanging.
However, taking the Apple I I I out for a
spin does excite a lot of people, and we
hope that includes you. If you haven1t
read last month 1s column, we recommend
you get a copy. This series is
progressive in that each article builds
on the previous one. We1re going to
assume that you have been following the
series, so that each month we can cover a
new topic in the least possible amount of
purple prose.

Another reminder before we start: we
welcome questions and comments on this
series or on t:3asic in general. Because of
deadlines, each article is being written
before the previous month 1s is in print.
Thus, reaction to your timely comment will
be somewhat delayed. Let those cards and
letters roll in, and the responses will
show up JUSt as soon as inhumanly
possible.

The SOS File System Revisited. After a
brief discussion of the Apple I I I SOS file
system, last month 1s column concluded with
something of a challenge for you. We were
working with a program to dump the
contents of the screen to the Silentype
printer, and we mentioned that the program
could be generalized for any file,
including text files. The point was that
SOS takes care of all the details about
how each device works, so the user can
change things at will. For reference,
here1s the program with which we were
working:

50
90
150
155
160
165
170
180
190
200

OPEN# 1, 11 • silent ype 11

INVOKE 11 readcrt. inv 11

FOR vp=1 TO 23
VPOS=vp
FOR hp=1 TO 80

HPOS=hp
PERFORM readc@value%)
PR I NT#1; CHR$(value%);
NEXT hp

PRINT#1

210 NEXT vp
900 VPOS=23: HPOS= 1
1000 END

t:3efore we modify this program to
generalize it, did you try to simplify the
program by using VPOS and HPOS directly in
lines 150 and 1b0? 13y that we mean:

150 FOR VPOS=1 TO 23
160 FOR HPOS=1 TO 80

If you did, you know that t:3asic will
respond to this change with the
classically familiar syntax error, because
VPOS and HPOS are reserved words and
cannot be used as index variables.

To continue, the challenge was to
generalize the screen dumping program so
the output could go to any file. Here1s
one solution to that problem:

50 VPOS=23:HPOS=1
60 INPUT 11 Name of file to dump

100
110
120

130
140
150
160
170
HlO
190

screen to: 11 ;filename$
OPEN# 1, filename$
INVOKE 11 read crt. inv 11

FOR vertical= 1 TO 23
VPOS=vertical
FOR horizontal=1 TO ilO

HPOS=horizontal
PERFOKM readc~value%)

PRINT# 1; CHR$(value%);
NEXT horizontal

PRINT#l
200 NEXT vertical
210 CLOSE
300 VPOS=23: HPOS= 1
310 END

Several differences are worthy of note.
First, the cursor has been r epositioned in
line 50 to the bottom ot the screen to
avoid overwriting any existing data. The
user is then prompted in iine 60 to type
in the name of the output file. Note that
this can be any filename legal on the
Apple I I I that accepts output (printers,
the communications port, a disk text file,
even .CONSOLE itself).

Note also the addition of the close
statement at line 210. This ensures that
all files are properly written to and
dispensed with at the conclusion of the
program. Failure to close files properly
can leave some data still in memory (since
files aren 1t automatically closed at the
end of the program). This can have some
interesting consequences if the file in
question is a disk file and you switch to

17

another diskette that doesn't have the
file created on it. Now is the time to
f o rm the habit of closing all files at the
end of a program.

Kunning this program can be instructive.
Obviously, if you reply ".SILENTYPE" to
the prompt, it will work like the first
example. Try replying ".CONSOLE" now.
After the usual initial whirring of the
disk to load the lnvokable Module, the
program appears to go to sleep for forty
seconds or so . What's happening is that
the program is r e adin ~1 a characte r and
then copying it back on top of itself!
The Apple I I I is working its little heart
out, and the result is as exciting as
watching bread mold.

Now try r eplying with a disk file name
(you can just make up a name , as long as
it follows th e fil e n arne rul es). T h e di sk
will whir as b e for e . This time tjasic has
a number of Jobs to do. First, it must
open the disk file using the name you gave
it (let's assume y ou typed MYFILc.SCR.EEI'-l).
t3asic tells SOS to create th e fil e
(assuming it doesn't already exist), by
making an entry in th e directory of the
current disk volume and finding initial
space for the file. tjasic then sets up a
buffer area in memory for communication of
data to and fr o m the file. Since Apple
I I I divides th e disk up into blocks of 512
characters , this inte rn a I buffer is 5 1 2
bytes. This buffer siz e is fixed no
matte r what record siz e you specify.
Later on in this article, we'll look at
techniques that use that piece of
information to ensure maximum e fficiency
and performance in disk-based application
programs.

Once th e fil e is op e n ed , tj as ic than
invoke s th e R.eadcrt mod ule , and execution
begins. Notice that, although the printer
in our precious example started almost
i mmediately, th e r e is a noticeable pause
be f o r e th e disk spins into acti on, and it
ap p ear s t o sp i n only four time s b efore the
proq r am s t op s . VH1at' s h app ening is this:
line 170 pri n t <; one ch aracter at a time
into th e nutfPr. Afte r e i ~Jhty characters,
line 1'J U prints a carriage return into the
t) uffer ancJ then starts the next line.
A tte r a little mor e than six lines of the
scr een (4!JU byte s plus six returns plus 26
by t e s o t li nP 7 t o b e exact) the 512 byte
b uffe r is full and must b e writte n to
di sk. That's th e first spin of the di sk

18

that writes the first block of the file.
Next, the block number is incremented, and
more writing starts from line 7 of the
screen. 512 bytes later the same process
is repeated until all the screen is read
by the program and written into the last
buffer. Some arithmetic would convince
you that t3asic is in the middle of its
fourth buffer when the program finishes
reading line 23 of the screen. That's
when the previous comment about being sure
to close files comes in handy. The Close
command in line 210 forces the current
buffer to be written to disk, even if it's
not full, and the directory entry is
updated to reflect the new file
information.

After running the program, the catalog
listing of the file should look something
like figure 1.

TYPE BLKS NAME MODIFIED TIME

TEXT 00005 MYFILE.SCR.EEN OOIOOIOO 00:00

CREATED TIME EOF

OOIOOIOO 00:00 1863

Figure 1.

Notice that Sasic identified the file as a
text file automatically, because the
Print# command was used to write to it.
Notice also that the Blks used column
shows five. That disagrees with what we
had predicted, since the screen data
should have been able to fit into four
blocks (2048 bytes). The reason for the
extra block is that SOS allocates an extra
block as an index block to store
information about where the rest of the
blocks in the fil e are physically located.
This ensures that a large file can be
created, even if the disk is fragmented
into small areas of unused space. If you
look close ly at the directories of
various files, you will note that all o f
them have one more block that the EOF
column would indicate , except for the
one-block files, which have no need of an
index block. In this case, the EOF (end
of file) is after 1863 bytes. That works
out to twenty-three lines of eighty
characters (1840 bytes) plus twenty-three
carriage returns for a total of 1863
bytes. "Close enough for folk music, 11 as
they used to say in high school.

vne last subJect before we move on to
further explore files. The Silentype gave
us a permanent record of what was on the
screen, but since we wrote the results to
a disk file this time, we need a way to
dump the contents of MYFILE.SCKEEN to th e
printer. The following program easily
accomplishes the task and serves as a
general file-to-file transfer program:

5 INPUT"Name of file to dump:
"; inputfile$

10 OPEN#1, input file$
15 console=O
20 INPUT"File to dump to:

";outputfile$
25 OPEN#2,outputfile$
30 check$=MIO$(outputfile$, 1,3)
35 IF check$=".co"OR check$=".CO"

OR check$=".Co"Then console =1
40 IF console THEN HOME
45 ON EOF#1GOTO 65
50 INPUT#1;a$
55 PRINT#2;a$;
60 GOTO 50
65 IF console THEN HPOS=1: VPOS=23
70 CLOSE
75 END

There. AS long as you don't try to r ead
from the printer and print to the
keyboard, it should work fine.

Note that we've checked in line 35 to see
if the device being written to is
• CONSOLE. If so, line 40 clears the
screen to reproduce exactly what was there
when the original program was run. Line
65 repositions the cursor to the bottom of
the screen so that the prompt will not
cause the top line to scroll out of view.

More on Files. The subtle and nefarious
purpose of this lesson, if you haven't
realized by now, is to provide more
insight into 1::3usiness 1::3asic disk files.
We've remained true to the promise of the
first article and assumed that you are
skilled in Basic, so hang on as things get
more interesting ••••

So far, we've considered only the type of
disk files referred to as t ext files.
These are files that contain ASCII
characters, which are representative of
what would be printed out if we wrote data
to the screen instead of disk. For now
we'll stick with this file type and later
touch on data files, a useful and
relatively unique file type on the Apple
//1.

Vve've already learned that the disk is
or~1anized into 512-byte blocks. In fact,
tiasic text tile records can be of any
reasonable size. Instead of usin ~J the
Open statement, which assigns a defau lt of
512 bytes, we could have used the Create
statement, which allows up to 32, 767-by t e
r ecords to be used . Of course, the record
size of a particular file is of no
consequence if w e ar e merely going to read
each string in on1er (as we did with the
contents of the screen).

The real power of creating files of
various record sizes is to be .able to read
data on a particular item in the film
randomly without having to deal with the
other data in the file. For example, i f
we had wanted to print the twenty-first
line of the screen in th e previous
examp le, it would be necessary to input
the tirst twenty lines, discard the data,
and then finally r ead and print the line
we wanted. A much more ef fici ent way
would be to create the tile as a random
access fi le with recor c:i size of e i gh t y - on e
bytes. Since each r ecord will correspond
with one line of the screen, we have an
easy way too address the data in questi on .
Compare the examp les be low with the
previous sequential access examples:

50
60

70
1UO
110

115
120

VPOS= 23: HPOS= 1
INPUT" Name of file to dump
screen to: ";filename$
CREATE filename$, TE XT , Hl
UPENII 1, filename$
INVOKE "readcrt. inv"

cum$=""
FOR vertical= 1 TO 23

130 VPOS=v ertical
140
150
160
170
1Bu
ElO
1~5

200
210
300
310

FOK horizontal= 1 TO i:SU
HPOS=horizont a l
PERFOKI\i readcl'!value'!, J
cum$=cum$+CHK$(value'!,)
NEXT horizontal

Pk I NT# 1, vertical; cum$
cum$=""
NEXT v ertical

CLOSE
VPOS=23 : HPOS= 1
END

Note that we have added line 70 to creak
the filename with th e p roper recor o size .
The notation of Text is ex tra b a~;ga(je ,
since th e Print statements in the pro~:; rarn
will automatically define it as a t ext
file, but it i s good p r ac ti ce to be
specific. I have also added a new wrinkl e

19

in lines 115, 170, 190, and 195. Instead
of printing each character as it is read,
the variable 11 cum$ 11 is used to accumulate
characters as they are read from the
screen. Line 190 prints the entire line
of the screen using the vertical position
as the record number. The result when
running this program seems the same as
when running the sequential version,
except for one thing. If you catalog the
resulting filename, it should look
something like figure 2 (assuming a name
of SCR.DUMPL.RND).

TYPE BLKS NAME MODIFIED TIME

TEXT 00005 SCR.DUMP.RND 00/00/00/ 00:00

CR.EATED TIME EOF

00/00/00 00:00 1944

Figure 2.

Everything is the same except the length.
It turns out that, when a file is created,
the first record is record 0 , not record
1. This is consistent with the first
element of an array being element O.
Therefore Basic has reserved twenty - four
(not twenty-three) records of eighty-one
bytes each for a total of 1944 bytes.

Now that we have associated a record
number with every line on the original
screen , we can locate a given line by just
giving its number instead of having to
read through all the other lines to find
it. Witness the modified read program:

5 INPUT 11 Name of file to dump:
11 ; input file$

10 OPEN#1, input file$
15 console=O
20 INPUT 11 File to dump to: 11 ;

output file$
25 OPEN#2,outputfile$
30 check$=MID$(outputfile$, 1,3)
35 IF check$= 11 .co 11 0R check$= 11 .C0 11

OR check$= 11 .Co 11 THEN console=1
40 IF console THEN HOME
45 ON EOF#1 GOTO 65
47 INPUT 11 record number to dump :

48
50
55
60

20

11 ;rec
I F r ec=O T HEN 6 5
INPUT#1,rec ; a$
PRINT#2;a$;
GOTO 47

65 IF console THEN HPOS=1 :VPOS=23
70 CLOSE
75 END

This program is very similar to the
previous program except that line 47 asks
for the specific record to dump, line 48
gives us a way out by checking for zero,
and line 50 has been modified to read
directly to the record number previously
entered.

Some experimentation with this program
will produce interesting results. Try
reading records 1,6, 12, and 18. In each
case, you will cause a disk access
(whirring is a clue) to read the
particular record. Now try reading
records 6,7,8,9, and 10 in any order you
choose, The first record you read will
probably cause a disk access, but the
others should occur virtually
instantaneously without causing disk
activity. This is because SOS is still
buffering flies in 512-byte blocks, and
all those records fall within one block.
There was no need to reread the disk
because the data was already in memory.
Careful planning of your record sizes and
reading sequences can have the effect of
substantially increasing the performance
of your program, if as many reads as
possible occur within the current buffer.

One interesting postscript before we
proceed : If you ask for record 6 there
will typically b e a disk r ead, as we1ve
said. If you immediately request record
5, another disk read will be performed.
This is what you might expect, but more is
going on here than meets the eye. Simple
calculation will prove that record 6
actually occupies space in both block 1
and block 2 of the file. The first six
r ecords, 0 through 5, occupy 6*81 or 486
bytes of the first block, leaving only
twenty-six bytes in that first block for
record number 6. The remaining fifty-five
bytes are in block 2.

Thus a read to r ecord 6 actually triggers
two disk reads , one to load in block 1 for
the first part of record 6, and one for
block 2 to obtain the remainder of the
record. Therefore, when you requested
record 5, Basic had to go back and reread
block 1 (remember, only one block is kept
in memory per fil e).

A little more arithmetic will show which
other records are in this same situation.
The moral is simple: if possible, make
Y?u.r r~cord sizes such that they evenly
d1v1de 1nto 512 or are a multiple of 512.
That may waste a little space, but the
waste may be more than compensated for in
the ability to predict when disk access
will take place.

A Final Challenge. We just reviewed the
last five or six paragraphs and discovered
that our usual humorous style has been
replaced by long, detailed discourses of
unrelieved tedium. There is,
unfortunately, no letup in sight.

To this point we have been using "record
number" files (called random access by
most people) with record numbers that span
a rather narrow range. SOS permits random
files to have record numbers in the range
of 0 to 32767. However, SOS does not
demand that a file actually have all the
records present on the disk. Records are
allocated as written, with only a little
space taken up to keep track of where
ev_eryt.hing is. To illustrate the power
th1s g1ves, consider the following

problem:

A distribution company wants to keep track
of their part numbers and descriptions.
The part numbers are four-digit numbers.
Following is a simple program to create
the part number file.

Between now and next time, you could try
writing a program to retrieve part number
information randomly and make changes as
required. Without further ado •••

5 HOME
10

20
30

40

50

60
70
80
90
100

110

PRINT" Parts file Create and
Add program"
PRINT
PRINT "Type to Create a parts
file" : PRINT
PRINT"Type 2 to add to an
existing parts file"
PRINT:INPUT"Your selection : ";
a$
IF a$=""THEN 1000
a=VAL(a$)
ON a GOTO 100 , 400
GOTO 5
PRINT:INPUT"name of new parts
file:"; a$
IF a$="" THEN 5

120
130

140
400

410
42 0
430
500

510
520
530

535
540
545
550

560
570
580

590
600

610

620
630

640
650

660
670
680
1000

1010
1020

CREATE a$, TEXT , 64
PRINT"Parts file ";a$;
"created."
GOTO 5
PR.I NT: I NPUT "Name of existing
parts file: ";a$

IF a$BJ•" THEN 5
OPEN # 1,a$
HOME
PRINT : I NPUT"Part number to
add : "; a$
IF a$="" THEN 5
a=VAL(a$)
IF a<1 OR a>32767 OR I NTla)<>a
THEN 500
rec=a
rec$=a$+"®"
PRINT:I NPUT"Descripti on: ";a$
IF LEN(a$)>30 THEN a$=MID$
(a$, 1, 30)
r ec$=rec$+a$+" ®"
PRINT: INPUT "location:" ; a$
IF LEN(a$)>10 Then a$=MID$
(a$, 1 , 1 o)
rec$=rec$+a$+"®"
PRINT : I NPUT"Quantity on hand :
";a$
a=O: a=VAL(a$): IF IN T (a)<>a
THEN 600
rec$=rec$+a$+"®"
PRINT :PRINT"Record is: " ;rec$;
II OK? II ;

INPUT"";a$
a$=MID$(a$,1,1):1F a$<>"y"
AND a$<>"Y" THEN 430
PR I NT#1, rec; r ec$
PRINT : PRINT" Record added ."
GOTO 430
PRINT:PRINT"End of parts file
program."
CLOSE
END

Thi s doe s not presume to b e a mod el
program in terms of its error checking ,
efficiency, or even logic design (note all
the Gotos, patently offensive to the

initiated). We tried to keep the prog ram
simp,le and straightforward, allowing
plenty of room f or improvements. One or
two things are worth pointing out t o h elp
you with your inquiry program. Since each
field could be of varying length within
certain limits, the backslash character is
used to delimit each item. You'll want to
strip these out when you retrieve the
r ecord. Look up the function lnstr ; it'll
make it easy.

21

Once you 1ve typed this program in, trying
it out can be interesting. Try several
values for part number, including some
larger ones (greater than thousand, at
least). Unless you add records that are
sequential, each one will probably trigger
a disk access as the appropriate block is
written to disk. After adding several,
get out of the program by typing Return to
the part number and selection prompts and
check out the catalog entry on the file.
Assuming you used the name MY .PARTS as a
file name when you used the create option,
the entry will look something like figure
3.

TYPE BLKS NAME MODIFIED TIME

TEXT 00007 MY .PARTS OOIOOIOO 00:00

CREATED TIME EOF

OOIOOIOO 00:00 85376

Figure 3.

Look at that EOF value! It seems that you
have a huge file until you notice that the
Blocks Used column is still pretty small.
What SOS has done is report the EOF at the
end of the highest record number you used,
while allocating only those blocks that it
actually needed. Some micros (and some
mainframes, for that matter) would require
that all the blocks be allocated before
any could be written.

Well, have fun until next time. Then
we1ll try to lighten it up a little as we
talk about the mysterious data file type
and start using the massive amount of
memory in the Apple I I I for some really
fast indexing schemes. Before this series
is over, you should be able to write some
pretty hot database programs. Till then,
ponder the following: Is it true that
disk-based programs are written by
BLOCKheads?

22

Printing Mailing Lists on One Line
Continued f rom Page 8

Deleting all of the explanatory comments
our program looks like this:

BEGIN B
F* <+>,**A
F<[=]«A
F<@l @< .CR0>.LM1S>.RM9S><A
F<@2 @< .LM+2S><A
F<@3@< .LM+30><A
F<@4@<.LM+l6><A
FC@S@<.LM+3><A
F<A@6@<. CRD<A
PNP

Which we saved as "KENS .ONE.LINER". To
execute the program, once we have loaded
the list we want to print out, into Apple
Writer///, all you have to do is type
[P]DO .Dl/KENS.ONE.LINER<RETURN> .

In the next issue I will show you how to
execute the program faster and build in a
prompt requesting the name of the list
you want to print out on one line.

Your comments and questions regarding
Apple Writer/// Word Processing Language
are welcome. In addition if you have a
special routine you have developed, send
it to us on diskette with lots of
explanatory comments.

Back Issues
Open Apple Gazette
Volume 1 Number 1
Volume 1 Number 2
Mail requests for back
Open Apple Gazette
P.O. Box 813
San Francisco 94101

$ 3.00
$ 4.00

issues to:

Recovering deleted or damaged files.

Have you ever deleted a file such as a
VisiCalc Model, or an important letter
from a diskette then suddenly realized
that you needed the deleted files after
all. Wh en you delete a file (VisiCalc
Model, Apple Writer file, etc.) from a
diskette you are actually just deleting
it from the diskette directory. As long
as you have not added anything to the
diskette since your deletion your
original fil e is still intact on the
diskette .

Well one of our members, Mike Weathers,
has a solution for you. For $ 20.00 per
diskette plus postage Mike will recover
your data for you.

Mike is also able to recover files which
are lost when the directory on a diskette
is damaged.

His address is as follows:

Mike Weathers
PO Box 1865
Morganton, N.C.
28655

Ill
Van loves Program Writer I Reporter

Vital Information--yes, the same people
that brought you the Vanloves Software
Directory--have released an interactive
database code generator for the Apple
II I.

According to Vital Information, Program
Writer was developed because of the great
demand that the software industry is
placing on programmers. As a publisher,
they have received many calls from
potential computer users requesting
non-existing software applications. They
feel--and rightly so--that most
programmers don 1t have a thorough enough
understanding of the business they1re
programming for to develop programs that
meet the needs of the business community.

Program Writer allows the user to answer
a series of logical English questions
such as: what does it look like, how long
is it, what calculations are needed, what
data to accept, what data not to accept?
Program/Writer will then write a custom

program based on the data input. If this
program does what it claims, then it
certainly would represent a giant step in
the right direction of communicating wi th
computers.

Program Writer can handle records of up
to 3,000 characters. The number of
records that can be stored is limited
only to the physical size of the storage
device used (either hard disk or floppies
are supported). The display screen is
user-definable, this and the complete
printer output control allows the user to
use pre-printed forms. Calculation and ·
mathematical computation ability is
reportedly unlimited. You can write as
many programs as you wish and the object
codes can be edited. Searches can be
instituted by any field or range within a
field (for example, you can lookup cities
with a population size of between 50,000
and 750,000). Records can be deleted or
updated. Files are interactible, meaning
that if one record is updated an
inventory file is automatically adjusted
to reflect the change. Field entries can
be protected from erroneous input.
Standard database reports are available :
selected report print-outs, checks,
invoices, mail lists and sales data.

The description of this program fits a
powerful database program. The addition
of easy English commands should make it
easy to learn. Program Writer is written
in BASIC which is not really a suitable
language for large-record file
processing.

Price is $200.00 for Program Writer and
$99.00 for Program Reporter.

Apple Support Line

For those of you who encounter many
seemingly unsolvable problems there is
help! Apple Computer has a support line
which can help solve some of those
mysteries. At the other end of
408-745-6731 are some very helpful people
who can assist you with almost any
problem. Of course, computers can be
mystifying to even their own makers so
don 1t expect them to solve everything.
Problems with programming logic, for
instance, are better left to text
materials.

23

opczn Cl~l?lcz ~
qazcz~tcz lQJ

P 0 BOX 813 SAN FRANCISCO 94101

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

